Applying a path planner based on RRT to cooperative multirobot box-pushing

Considering robot systems in the real world, a multirobot system where multiple robots work simultaneously without colliding with each other is more practical than a single-robot system where only one robot works. Therefore, solving the path-planning problem in a multirobot system is very important.In this study, we developed a path-planner based on the rapidly exploring random tree (RRT), which is a data structure and algorithm designed for efficiently searching for multirobot box-pushing, and made experiments in real environments. A path planner must construct a plan which avoids the robot colliding with obstacles or with other robots. Moreover, in some cases, a robot must collaborate with other robots to transport the box without colliding with any obstacles. Our proposed path planner constructs a box-transportation plan and the path plans of each robot bearing the above considerations in mind.Experimental results showed that our proposed planner can construct a multirobot box-pushing plan without colliding with obstacles, and that the robots can execute tasks according to the plan in real environments. We also checked that multiple robots can perform problem tasks when only one robot could not transport the box to the goal.

[1]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  Bruce Randall Donald,et al.  Algorithmic and Computational Robotics: New Directions , 2001 .

[3]  Seiji Yamada,et al.  Adaptive action selection without explicit communication for multi-robot box-pushing , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[4]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .