Visual Homing in Insects and Robots
暂无分享,去创建一个
[1] E. C. Sobel. The locust's use of motion parallax to measure distance , 1990, Journal of Comparative Physiology A.
[2] F. Dyer,et al. The role of orientation flights on homing performance in honeybees. , 1999, The Journal of experimental biology.
[3] T. Collett,et al. The use of visual landmarks by honeybees: Bees weight landmarks according to their distance from the goal , 1987, Journal of Comparative Physiology A.
[4] J. Zeil. Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) , 1993, Journal of Comparative Physiology A.
[5] B. A. Cartwright,et al. Short Communications: How Honey-Bees Know their Distance from a Near-By Visual Landmark , 1979 .
[6] J. Zeil,et al. Tetragonisca guard bees interpret expanding and contracting patterns as unintended displacement in space , 1997, Journal of Comparative Physiology A.
[7] J M Zanker,et al. Movement-induced motion signal distributions in outdoor scenes , 2005, Network.
[8] Hanspeter A. Mallot,et al. Metric embedding of view-graphs , 2007, Auton. Robots.
[9] Lore Becker,et al. Untersuchungen über das Heimfindevermögen der Bienen , 1958, Zeitschrift für vergleichende Physiologie.
[10] Wolfgang Stürzl,et al. Depth, contrast and view-based homing in outdoor scenes , 2007, Biological Cybernetics.
[11] T. Collett,et al. Multiple stored views and landmark guidance in ants , 1998, Nature.
[12] Adrian G Dyer,et al. Honeybees can recognise images of complex natural scenes for use as potential landmarks , 2008, Journal of Experimental Biology.
[13] Paul Graham,et al. The influence of beacon-aiming on the routes of wood ants , 2003, Journal of Experimental Biology.
[14] Wolfgang Stürzl,et al. Going Wild: Toward an Ecology of Visual Information Processing , 2007 .
[15] Andrew Philippides,et al. Improving Agent Localisation Through Stereotypical Motion , 2007, ECAL.
[16] J. Zeil,et al. Ground-nesting bees determine the location of their nest relative to a landmark by other than angular size cues , 1994, Journal of Comparative Physiology A.
[17] Bernhard Schölkopf,et al. Where did I take that snapshot? Scene-based homing by image matching , 1998, Biological Cybernetics.
[18] T. Collett,et al. Looking and learning: a spatial pattern in the orientation flight of the wasp Vespula vulgaris , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[19] R. Pfeifer,et al. A mobile robot employing insect strategies for navigation , 2000, Robotics Auton. Syst..
[20] M. Srinivasan,et al. Visual figure–ground discrimination in the honeybee: the role of motion parallax at boundaries , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.
[21] Hanspeter A. Mallot,et al. Efficient visual homing based on Fourier transformed panoramic images , 2006, Robotics Auton. Syst..
[22] A. S. Edwards,et al. Ontogeny of orientation flight in the honeybee revealed by harmonic radar , 2000, Nature.
[23] N. Tinbergen,et al. Über die Orientierung des Bienenwolfes (Philanthus triangulum Fabr.) , 2004, Zeitschrift für vergleichende Physiologie.
[24] Ben J. A. Kröse,et al. Navigation using an appearance based topological map , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.
[25] M. Heisenberg,et al. Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.
[26] T. S. Collett,et al. Landmark learning in bees , 1983, Journal of comparative physiology.
[27] Giovanni M. Bianco,et al. The turn-back-and-look behaviour: bee versus robot , 2000, Biological Cybernetics.
[28] Ralf Möller,et al. Insects could exploit UV-green contrast for Landmark navigation. , 2002, Journal of theoretical biology.
[29] Luc Van Gool,et al. Omnidirectional Vision Based Topological Navigation , 2007, International Journal of Computer Vision.
[30] Elisabeth Opfinger. Über die Orientierung der Biene an der Futterquelle , 1931, Zeitschrift für vergleichende Physiologie.
[31] J. Zeil. Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) , 1993, Journal of Comparative Physiology A.
[32] Thomas S Collett,et al. Using artificial evolution and selection to model insect navigation , 2001, Current Biology.
[33] Collett,et al. Learning walks and landmark guidance in wood ants (Formica rufa) , 1999, The Journal of experimental biology.
[34] Olivier Stasse,et al. MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[35] J. H. van Hateren,et al. Pattern recognition in bees: orientation discrimination , 1990, Journal of Comparative Physiology A.
[36] U. Homberg. In search of the sky compass in the insect brain , 2004, Naturwissenschaften.
[37] Andrew Vardy,et al. Biologically plausible visual homing methods based on optical flow techniques , 2005, Connect. Sci..
[38] T. S. Collett,et al. Landmark maps for honeybees , 1987, Biological Cybernetics.
[39] Ralf Möller,et al. Local visual homing by warping of two-dimensional images , 2009, Robotics Auton. Syst..
[40] Karl Kral,et al. Behavioural–analytical studies of the role of head movements in depth perception in insects, birds and mammals , 2003, Behavioural Processes.
[41] Robert M. Haralick,et al. Review and analysis of solutions of the three point perspective pose estimation problem , 1994, International Journal of Computer Vision.
[42] R Möller,et al. Do insects use templates or parameters for landmark navigation? , 2001, Journal of theoretical biology.
[43] M. Lehrer. Why do bees turn back and look? , 1993, Journal of Comparative Physiology A.
[44] T. S. Collett,et al. Honeybees learn the colours of landmarks , 2004, Journal of Comparative Physiology A.
[45] T. S. Collett,et al. Visual spatial memory in a hoverfly , 2004, Journal of comparative physiology.
[46] T. Collett,et al. Approaching and departing bees learn different cues to the distance of a landmark , 1994, Journal of Comparative Physiology A.
[47] Ralf Möller,et al. Insect visual homing strategies in a robot with analog processing , 2000, Biological Cybernetics.
[48] R. Menzel,et al. Color constancy in the honeybee , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[49] S. Al-Moghrabi,et al. Inorganic carbon uptake for photosynthesis by the symbiotic coral-dinoflagellate association II. Mechanisms for bicarbonate uptake , 1996 .
[50] Jochen Zeil,et al. A robust procedure for visual stabilisation of hovering flight position in guard bees of Trigona (Tetragonisca) angustula (Apidae, Meliponinae) , 2004, Journal of Comparative Physiology A.
[51] T. S. Collett,et al. Making learning easy: the acquisition of visual information during the orientation flights of social wasps , 1995, Journal of Comparative Physiology A.
[52] Jochen Zeil,et al. Catchment areas of panoramic snapshots in outdoor scenes. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.
[53] James J. Little,et al. Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.
[54] C. Wei,et al. Deciding to learn: modulation of learning flights in honeybees, Apis mellifera , 2002, Journal of Comparative Physiology A.
[55] Paul Graham,et al. Navigational Memories in Ants and Bees: Memory Retrieval When Selecting and Following Routes , 2006 .
[56] R. Wehner,et al. Visual spatial memory in desert ants,Cataglyphis bicolor (Hymenoptera: Formicidae) , 1979, Experientia.
[57] Collett,et al. Magnetic compass cues and visual pattern learning in honeybees , 1996, The Journal of experimental biology.
[58] Jochen Zeil,et al. Image motion environments: background noise for movement-based animal signals , 2008, Journal of Comparative Physiology A.
[59] T. Collett,et al. Insect navigation en route to the goal: multiple strategies for the use of landmarks , 1996, The Journal of experimental biology.
[60] S. Healy. Spatial representation in animals. , 1998 .
[61] Hanspeter A. Mallot,et al. Vision-Based Homing with a Panoramic Stereo Sensor , 2002, Biologically Motivated Computer Vision.
[62] Frédéric Labrosse. Short and long-range visual navigation using warped panoramic images , 2007, Robotics Auton. Syst..
[63] J. Zeil,et al. Structure and function of learning flights in bees and wasps , 1996 .
[64] Andrew Vardy,et al. Local visual homing by matched-filter descent in image distances , 2006, Biological Cybernetics.
[65] Almut Kelber,et al. Invertebrate colour vision , 2006 .
[66] G. K. Wallace. Visual Scanning in the Desert Locust Schistocerca Gregaria Forskål , 1959 .
[67] Bernhard Schölkopf,et al. Learning View Graphs for Robot Navigation , 1997, AGENTS '97.
[68] James J. Little,et al. Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..
[69] Berthold K. P. Horn,et al. Closed-form solution of absolute orientation using unit quaternions , 1987 .
[70] Hanspeter A. Mallot,et al. These Maps Are Made for Walking - Task Hierarchy of Spatial Cognition , 2008, Robotics and Cognitive Approaches to Spatial Mapping.
[71] David W. Murray,et al. Simultaneous Localization and Map-Building Using Active Vision , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[72] Darius Burschka,et al. V-GPS(SLAM): vision-based inertial system for mobile robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.
[73] Allen Cheung,et al. The information content of panoramic images I: The rotational errors and the similarity of views in rectangular experimental arenas. , 2008, Journal of experimental psychology. Animal behavior processes.
[74] George Adrian Horridge. Visual Processing of Pattern , 2006 .