Visual Homing in Insects and Robots

Insects use memorised visual representations to find their way back to places of interest, like food sources and nests. They acquire these visual memories during systematic learning flights or walks on their first departure and update them whenever approaches to the goal have been difficult. The fact that small insects are so good at localisation tasks with apparent ease has attracted the attention of engineers interested in developing and testing methods for visual navigation on mobile robots. We briefly review here (1) homing in insects; (2) what is known about the content of insect visual memories; (3) recent robotics advances in view-based homing; (4) conditions for view-based homing in natural environments and (5) issues concerning the acquisition of visual representations for homing.

[1]  E. C. Sobel The locust's use of motion parallax to measure distance , 1990, Journal of Comparative Physiology A.

[2]  F. Dyer,et al.  The role of orientation flights on homing performance in honeybees. , 1999, The Journal of experimental biology.

[3]  T. Collett,et al.  The use of visual landmarks by honeybees: Bees weight landmarks according to their distance from the goal , 1987, Journal of Comparative Physiology A.

[4]  J. Zeil Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) , 1993, Journal of Comparative Physiology A.

[5]  B. A. Cartwright,et al.  Short Communications: How Honey-Bees Know their Distance from a Near-By Visual Landmark , 1979 .

[6]  J. Zeil,et al.  Tetragonisca guard bees interpret expanding and contracting patterns as unintended displacement in space , 1997, Journal of Comparative Physiology A.

[7]  J M Zanker,et al.  Movement-induced motion signal distributions in outdoor scenes , 2005, Network.

[8]  Hanspeter A. Mallot,et al.  Metric embedding of view-graphs , 2007, Auton. Robots.

[9]  Lore Becker,et al.  Untersuchungen über das Heimfindevermögen der Bienen , 1958, Zeitschrift für vergleichende Physiologie.

[10]  Wolfgang Stürzl,et al.  Depth, contrast and view-based homing in outdoor scenes , 2007, Biological Cybernetics.

[11]  T. Collett,et al.  Multiple stored views and landmark guidance in ants , 1998, Nature.

[12]  Adrian G Dyer,et al.  Honeybees can recognise images of complex natural scenes for use as potential landmarks , 2008, Journal of Experimental Biology.

[13]  Paul Graham,et al.  The influence of beacon-aiming on the routes of wood ants , 2003, Journal of Experimental Biology.

[14]  Wolfgang Stürzl,et al.  Going Wild: Toward an Ecology of Visual Information Processing , 2007 .

[15]  Andrew Philippides,et al.  Improving Agent Localisation Through Stereotypical Motion , 2007, ECAL.

[16]  J. Zeil,et al.  Ground-nesting bees determine the location of their nest relative to a landmark by other than angular size cues , 1994, Journal of Comparative Physiology A.

[17]  Bernhard Schölkopf,et al.  Where did I take that snapshot? Scene-based homing by image matching , 1998, Biological Cybernetics.

[18]  T. Collett,et al.  Looking and learning: a spatial pattern in the orientation flight of the wasp Vespula vulgaris , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[19]  R. Pfeifer,et al.  A mobile robot employing insect strategies for navigation , 2000, Robotics Auton. Syst..

[20]  M. Srinivasan,et al.  Visual figure–ground discrimination in the honeybee: the role of motion parallax at boundaries , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[21]  Hanspeter A. Mallot,et al.  Efficient visual homing based on Fourier transformed panoramic images , 2006, Robotics Auton. Syst..

[22]  A. S. Edwards,et al.  Ontogeny of orientation flight in the honeybee revealed by harmonic radar , 2000, Nature.

[23]  N. Tinbergen,et al.  Über die Orientierung des Bienenwolfes (Philanthus triangulum Fabr.) , 2004, Zeitschrift für vergleichende Physiologie.

[24]  Ben J. A. Kröse,et al.  Navigation using an appearance based topological map , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[25]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[26]  T. S. Collett,et al.  Landmark learning in bees , 1983, Journal of comparative physiology.

[27]  Giovanni M. Bianco,et al.  The turn-back-and-look behaviour: bee versus robot , 2000, Biological Cybernetics.

[28]  Ralf Möller,et al.  Insects could exploit UV-green contrast for Landmark navigation. , 2002, Journal of theoretical biology.

[29]  Luc Van Gool,et al.  Omnidirectional Vision Based Topological Navigation , 2007, International Journal of Computer Vision.

[30]  Elisabeth Opfinger Über die Orientierung der Biene an der Futterquelle , 1931, Zeitschrift für vergleichende Physiologie.

[31]  J. Zeil Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) , 1993, Journal of Comparative Physiology A.

[32]  Thomas S Collett,et al.  Using artificial evolution and selection to model insect navigation , 2001, Current Biology.

[33]  Collett,et al.  Learning walks and landmark guidance in wood ants (Formica rufa) , 1999, The Journal of experimental biology.

[34]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  J. H. van Hateren,et al.  Pattern recognition in bees: orientation discrimination , 1990, Journal of Comparative Physiology A.

[36]  U. Homberg In search of the sky compass in the insect brain , 2004, Naturwissenschaften.

[37]  Andrew Vardy,et al.  Biologically plausible visual homing methods based on optical flow techniques , 2005, Connect. Sci..

[38]  T. S. Collett,et al.  Landmark maps for honeybees , 1987, Biological Cybernetics.

[39]  Ralf Möller,et al.  Local visual homing by warping of two-dimensional images , 2009, Robotics Auton. Syst..

[40]  Karl Kral,et al.  Behavioural–analytical studies of the role of head movements in depth perception in insects, birds and mammals , 2003, Behavioural Processes.

[41]  Robert M. Haralick,et al.  Review and analysis of solutions of the three point perspective pose estimation problem , 1994, International Journal of Computer Vision.

[42]  R Möller,et al.  Do insects use templates or parameters for landmark navigation? , 2001, Journal of theoretical biology.

[43]  M. Lehrer Why do bees turn back and look? , 1993, Journal of Comparative Physiology A.

[44]  T. S. Collett,et al.  Honeybees learn the colours of landmarks , 2004, Journal of Comparative Physiology A.

[45]  T. S. Collett,et al.  Visual spatial memory in a hoverfly , 2004, Journal of comparative physiology.

[46]  T. Collett,et al.  Approaching and departing bees learn different cues to the distance of a landmark , 1994, Journal of Comparative Physiology A.

[47]  Ralf Möller,et al.  Insect visual homing strategies in a robot with analog processing , 2000, Biological Cybernetics.

[48]  R. Menzel,et al.  Color constancy in the honeybee , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  S. Al-Moghrabi,et al.  Inorganic carbon uptake for photosynthesis by the symbiotic coral-dinoflagellate association II. Mechanisms for bicarbonate uptake , 1996 .

[50]  Jochen Zeil,et al.  A robust procedure for visual stabilisation of hovering flight position in guard bees of Trigona (Tetragonisca) angustula (Apidae, Meliponinae) , 2004, Journal of Comparative Physiology A.

[51]  T. S. Collett,et al.  Making learning easy: the acquisition of visual information during the orientation flights of social wasps , 1995, Journal of Comparative Physiology A.

[52]  Jochen Zeil,et al.  Catchment areas of panoramic snapshots in outdoor scenes. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[53]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.

[54]  C. Wei,et al.  Deciding to learn: modulation of learning flights in honeybees, Apis mellifera , 2002, Journal of Comparative Physiology A.

[55]  Paul Graham,et al.  Navigational Memories in Ants and Bees: Memory Retrieval When Selecting and Following Routes , 2006 .

[56]  R. Wehner,et al.  Visual spatial memory in desert ants,Cataglyphis bicolor (Hymenoptera: Formicidae) , 1979, Experientia.

[57]  Collett,et al.  Magnetic compass cues and visual pattern learning in honeybees , 1996, The Journal of experimental biology.

[58]  Jochen Zeil,et al.  Image motion environments: background noise for movement-based animal signals , 2008, Journal of Comparative Physiology A.

[59]  T. Collett,et al.  Insect navigation en route to the goal: multiple strategies for the use of landmarks , 1996, The Journal of experimental biology.

[60]  S. Healy Spatial representation in animals. , 1998 .

[61]  Hanspeter A. Mallot,et al.  Vision-Based Homing with a Panoramic Stereo Sensor , 2002, Biologically Motivated Computer Vision.

[62]  Frédéric Labrosse Short and long-range visual navigation using warped panoramic images , 2007, Robotics Auton. Syst..

[63]  J. Zeil,et al.  Structure and function of learning flights in bees and wasps , 1996 .

[64]  Andrew Vardy,et al.  Local visual homing by matched-filter descent in image distances , 2006, Biological Cybernetics.

[65]  Almut Kelber,et al.  Invertebrate colour vision , 2006 .

[66]  G. K. Wallace Visual Scanning in the Desert Locust Schistocerca Gregaria Forskål , 1959 .

[67]  Bernhard Schölkopf,et al.  Learning View Graphs for Robot Navigation , 1997, AGENTS '97.

[68]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[69]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[70]  Hanspeter A. Mallot,et al.  These Maps Are Made for Walking - Task Hierarchy of Spatial Cognition , 2008, Robotics and Cognitive Approaches to Spatial Mapping.

[71]  David W. Murray,et al.  Simultaneous Localization and Map-Building Using Active Vision , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[72]  Darius Burschka,et al.  V-GPS(SLAM): vision-based inertial system for mobile robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[73]  Allen Cheung,et al.  The information content of panoramic images I: The rotational errors and the similarity of views in rectangular experimental arenas. , 2008, Journal of experimental psychology. Animal behavior processes.

[74]  George Adrian Horridge Visual Processing of Pattern , 2006 .