Control of Networked Switched Systems Using Passivity and Dissipativity

Abstract Passivity and dissipativity are important in the study of Cyber Physical Systems (CPS) where systems with time and event-driven dynamics are connected. This paper provides conditions which guarantee stability of interconnected switched systems which may be used to model CPS. Results are presented for maintaining stability when switched systems are connected in feedback. Then methods for maintaining stability of passive switched systems that are connected over a network with delays are presented. Zusammenfassung Passivität und Dissipativität sind wichtige bei der Untersuchung von Cyber-physischen Systemen (CPS), die typischerweise aus zeit- und ereignisgesteuerter Dynamik bestehen. Dieser Beitrag stellt Bedingungen die die Stabilität vernetzter schaltender Systeme garantieren, die zur Modellierung von CPS verwendet werden können. Es werden Ergebnisse präsentiert, um Stabilität sicherzustellen, wenn Systeme über eine Rückführung miteinander verbunden werden. Außerdem Methoden zur Sicherstellung der Stabilität von geschalteten Systemen, die über ein Netzwerk mit Totzeiten verbunden sind, behandelt.

[1]  Alberto Bemporad,et al.  Passivity Analysis and Passification of Discrete-Time Hybrid Systems , 2008, IEEE Transactions on Automatic Control.

[2]  Frank Allgöwer,et al.  Dissipation inequalities in systems theory: An introduction and recent results , 2009 .

[3]  Panos J. Antsaklis,et al.  Stability of networked passive switched systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[4]  S. Hirche,et al.  Bilateral teleoperation over the internet: the time varying delay problem , 2003, Proceedings of the 2003 American Control Conference, 2003..

[5]  Sandra Hirche,et al.  A distributed controller approach for delay-independent stability of networked control systems , 2009, Autom..

[6]  Panos J Antsaklis,et al.  Control design for switched systems using passivity indices , 2010, Proceedings of the 2010 American Control Conference.

[7]  Qing Hui,et al.  Vector dissipativity theory for discrete-time large-scale nonlinear dynamical systems , 2004, Proceedings of the 2004 American Control Conference.

[8]  Jun Zhao,et al.  Dissipativity Theory for Switched Systems , 2005, CDC 2005.

[9]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[10]  R. Decarlo,et al.  Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.

[11]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[12]  P. Moylan,et al.  The stability of nonlinear dissipative systems , 1976 .

[13]  Panos J. Antsaklis,et al.  Stability of interconnected switched systems using QSR dissipativity with multiple supply rates , 2012, 2012 American Control Conference (ACC).

[14]  Mark W. Spong,et al.  Bilateral Teleoperation Over Unreliable Communication Networks , 2008, IEEE Transactions on Control Systems Technology.

[15]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[16]  P. Moylan,et al.  Stability criteria for large-scale systems , 1978 .

[17]  Mark W. Spong,et al.  Bilateral control of teleoperators with time delay , 1989 .

[18]  Jan C. Willems,et al.  Dissipative Dynamical Systems , 2007, Eur. J. Control.

[19]  A. Isidori,et al.  Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .

[20]  P.J. Antsaklis,et al.  Control of multiple networked passive plants with delays and data dropouts , 2008, 2008 American Control Conference.

[21]  Yue Wang,et al.  Control of cyberphysical systems using passivity and dissipativity based methods , 2013, Eur. J. Control.

[22]  Pao C. Chau,et al.  Process Control , 2002 .

[23]  Andrew R. Teel,et al.  Asymptotic stability for hybrid systems via decomposition, dissipativity, and detectability , 2010, 49th IEEE Conference on Decision and Control (CDC).

[24]  P. Olver Nonlinear Systems , 2013 .

[25]  Jean-Jacques E. Slotine,et al.  Stable Adaptive Teleoperation , 1990, 1990 American Control Conference.

[26]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[27]  M.W. Spong,et al.  Output Synchronization of Nonlinear Systems with Time Delay in Communication , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[28]  David J. Hill,et al.  Decomposable Dissipativity and Related Stability for Discrete-Time Switched Systems , 2011, IEEE Transactions on Automatic Control.

[29]  Gabor Karsai,et al.  Toward a Science of Cyber–Physical System Integration , 2012, Proceedings of the IEEE.

[30]  David J. Hill,et al.  Stability results for nonlinear feedback systems , 1977, Autom..

[31]  A. Fettweis Wave digital filters: Theory and practice , 1986, Proceedings of the IEEE.