The effects of contrast, spatial scale, and orientation on foveal and peripheral phase discrimination

[1]  C. E. Ferree,et al.  REFRACTION FOR THE PERIPHERAL FIELD OF VISION , 1931 .

[2]  B. Zetterström,et al.  Effect of Area and Intensity on the Size and Shape of the Electroretinogram * , 1954, The British journal of ophthalmology.

[3]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[4]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[5]  Cone Ra The early receptor potential of the vertebrate eye. , 1965 .

[6]  F. Campbell,et al.  The effect of orientation on the visual resolution of gratings , 1966, The Journal of physiology.

[7]  K. Naka,et al.  S‐potentials from colour units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[8]  D. Mitchell,et al.  Effect of orientation on the modulation sensitivity for interference fringes on the retina. , 1967, Journal of the Optical Society of America.

[9]  F Rempt,et al.  Peripheral retinoscopy and the skiagram. , 1971, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[10]  H. Levitt Transformed up-down methods in psychoacoustics. , 1971, The Journal of the Acoustical Society of America.

[11]  B Julesz,et al.  Inability of Humans to Discriminate between Visual Textures That Agree in Second-Order Statistics—Revisited , 1973, Perception.

[12]  Michel Millodot,et al.  Refraction of the periphery of the eye , 1974 .

[13]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[14]  Vicky G Bruce,et al.  Violations of Symmetry and Repetition in Visual Patterns , 1975 .

[15]  H. Bouma,et al.  Eccentric vision: Adverse interactions between line segments , 1976, Vision Research.

[16]  D. Hubel,et al.  Projection into the visual field of ocular dominance columns in macaque monkey , 1977, Brain Research.

[17]  M. A. Bouman,et al.  Perimetry of contrast detection thresholds of moving spatial sine wave patterns. III. The target extent as a sensitivity controlling parameter. , 1978, Journal of the Optical Society of America.

[18]  Jan J. Koenderink,et al.  Perimetry of contrast detection thresholds of moving spatial sine wave patterns. II. The far peripheral visual field (eccentricity 0°–50°) , 1978 .

[19]  M. A. Bouman,et al.  Perimetry of contrast detection thresholds of moving spatial sine wave patterns. I. The near peripheral visual field (eccentricity 0 degrees-8 degrees). , 1978, Journal of the Optical Society of America.

[20]  Jack M. Loomis,et al.  Lateral masking in foveal and eccentric vision , 1978, Vision Research.

[21]  J. Rovamo,et al.  Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision , 1978, Nature.

[22]  Martin S. Banks,et al.  Depth of focus, eye size and visual acuity , 1980, Vision Research.

[23]  W. Levick,et al.  Orientation bias of cat retinal ganglion cells , 1980, Nature.

[24]  J. Robson,et al.  Probability summation and regional variation in contrast sensitivity across the visual field , 1981, Vision Research.

[25]  D. Pollen,et al.  Phase relationships between adjacent simple cells in the visual cortex. , 1981, Science.

[26]  A. Fiorentini,et al.  Learning in grating waveform discrimination: Specificity for orientation and spatial frequency , 1981, Vision Research.

[27]  D. Pollen,et al.  Spatial computation performed by simple and complex cells in the visual cortex of the cat , 1982, Vision Research.

[28]  J Rovamo,et al.  Resolution of gratings oriented along and across meridians in peripheral vision. , 1982, Investigative ophthalmology & visual science.

[29]  G. Westheimer The spatial grain of the perifoveal visual field , 1982, Vision Research.

[30]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[31]  A. Leventhal,et al.  Relationship between preferred orientation and receptive field position of neurons in cat striate cortex , 1983, The Journal of comparative neurology.

[32]  K. D. De Valois,et al.  Spatial‐frequency‐specific inhibition in cat striate cortex cells. , 1983, The Journal of physiology.

[33]  Andrew B. Watson,et al.  Detection and Recognition of Simple Spatial Forms , 1983 .

[34]  M. C. Lawden,et al.  An investigation of the ability of the human visual system to encode spatial phase relationships , 1983, Vision Research.

[35]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[36]  H. Wilson,et al.  Modified line-element theory for spatial-frequency and width discrimination. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[37]  D. Field,et al.  Phase reversal discrimination , 1984, Vision Research.

[38]  D. Badcock Spatial phase or luminance profile discrimination? , 1984, Vision Research.

[39]  A. Leventhal,et al.  Relationship between preferred orientation and receptive field position of neurons in extrastriate cortex (area 19) in the cat , 1984, The Journal of comparative neurology.

[40]  P A Howarth,et al.  THE LATERAL CHROMATIC ABERRATION OF THE EYE , 1984, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[41]  D. Badcock How do we discriminate relative spatial phase? , 1984, Vision Research.

[42]  K R Nielsen,et al.  Application of a computable model of human spatial vision to phase discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[43]  Ingo Rentschler,et al.  Loss of spatial phase relationships in extrafoveal vision , 1985, Nature.

[44]  S. Klein,et al.  Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[45]  L A Temme,et al.  Peripheral Visual Field is Radially Organized , 1985, American journal of optometry and physiological optics.

[46]  S. Klein,et al.  Vernier acuity, crowding and cortical magnification , 1985, Vision Research.

[47]  W. Geisler,et al.  Ideal discriminators in spatial vision: two-point stimuli. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[48]  C W Tyler,et al.  Phase discrimination of compound gratings: generalized autocorrelation analysis. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[49]  J D Schall,et al.  Retinal constraints on orientation specificity in cat visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  Hugh R. Wilson,et al.  Responses of spatial mechanisms can explain hyperacuity , 1986, Vision Research.

[51]  D. Field,et al.  The structure and symmetry of simple-cell receptive-field profiles in the cat’s visual cortex , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[52]  M. J. Wright,et al.  Matching velocity in central and peripheral vision , 1986, Vision Research.

[53]  A. Johnston,et al.  Spatial scaling of central and peripheral contrast-sensitivity functions. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[54]  D. A. Burkhardt,et al.  Light adaptation and responses to contrast flashes in cones of the walleye retina , 1987, Vision Research.

[55]  G E Legge,et al.  Contrast discrimination in peripheral vision. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[56]  S. Klein,et al.  Positional uncertainty in peripheral and amblyopic vision , 1987, Vision Research.

[57]  J P Thomas,et al.  Effect of eccentricity on the relationship between detection and identification. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[58]  A. Hendrickson,et al.  Distribution of cones in human and monkey retina: individual variability and radial asymmetry. , 1987, Science.

[59]  M. Banks,et al.  Sensitivity loss in odd-symmetric mechanisms and phase anomalies in peripheral vision , 1987, Nature.

[60]  D M Levi,et al.  Peripheral hyperacuity: isoeccentric bisection is better than radial bisection. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[61]  R Näsänen,et al.  Cortical magnification and peripheral vision. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[62]  E. Zrenner,et al.  The variable interdependence of amplitude and implicit-time in PIII, b-wave and optic-nerve responses of the cat. , 1987, Experimental eye research.

[63]  B. Skottun,et al.  Effects of contrast and spatial frequency on vernier acuity , 1987, Vision Research.

[64]  Robyn A. Owens,et al.  Feature detection from local energy , 1987, Pattern Recognit. Lett..

[65]  R. F. Hess,et al.  Evidence for spatially local computations underlying discrimination of periodic patterns in fovea and periphery , 1987, Vision Research.

[66]  A B Watson,et al.  Estimation of local spatial scale. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[67]  D M Levi,et al.  Peripheral hyperacuity: three-dot bisection scales to a single factor from 0 to 10 degrees. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[68]  N J Coletta,et al.  Psychophysical estimate of extrafoveal cone spacing. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[69]  L. Thibos Calculation of the influence of lateral chromatic aberration on image quality across the visual field. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[70]  Jan J. Koenderink,et al.  Contrast discrimination: Invariant to spatial parameters , 1988, Vision Research.

[71]  Thom Carney,et al.  Orientation discrimination as a function of stimulus eccentricity and size: Nasal/temporal retinal asymmetry , 1988, Vision Research.

[72]  D. Pollen,et al.  Responses of simple and complex cells to compound sine-wave gratings , 1988, Vision Research.

[73]  Terry Caelli,et al.  On the discrimination of compound Gabor signals and textures , 1988, Vision Research.

[74]  E. Adelson,et al.  Early vision and texture perception , 1988, Nature.

[75]  D. Burr,et al.  Feature detection in human vision: a phase-dependent energy model , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[76]  Jukka Saarinen,et al.  Detection of mirror symmetry in random dot patterns at different eccentricities , 1988, Vision Research.

[77]  Tomaso Poggio,et al.  Computing texture boundaries from images , 1988, Nature.

[78]  D. Burr,et al.  Discrimination of spatial phase in central and peripheral vision , 1989, Vision Research.

[79]  Dennis M. Levi,et al.  Peripheral positional acuity: Retinal and cortical constraints on 2-dot separation discrimination under photopic and scotopic conditions , 1989, Vision Research.

[80]  D. Burr,et al.  Evidence for edge and bar detectors in human vision , 1989, Vision Research.

[81]  B. Boycott,et al.  Cortical magnification factor and the ganglion cell density of the primate retina , 1989, Nature.

[82]  R. J. Watt,et al.  Regional distribution of the mechanisms that underlie spatial localization , 1990, Vision Research.

[83]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.