Geometric algorithms for the conformational analysis of long protein loops

The efficient filtering of unfeasible conformations would considerably benefit the exploration of the conformational space when searching for minimum energy structures or during molecular simulation. The most important conditions for filtering are the maintenance of molecular chain integrity and the avoidance of steric clashes. These conditions can be seen as geometric constraints on a molecular model. In this article, we discuss how techniques issued from recent research in robotics can be applied to this filtering. Two complementary techniques are presented: one for conformational sampling and another for computing conformational changes satisfying such geometric constraints. The main interest of the proposed techniques is their application to the structural analysis of long protein loops. First experimental results demonstrate the efficacy of the approach for studying the mobility of loop 7 in amylosucrase from Neisseria polysaccharea. The supposed motions of this 17‐residue loop would play an important role in the activity of this enzyme. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 956–967, 2004

[1]  Jiří Novotný,et al.  Structure of antibody hypervariable loops reproduced by a conformational search algorithm , 1988, Nature.

[2]  M. Renaud,et al.  A SIMPLIFIED INVERSE KINEMATIC MODEL CALCULATION METHOD FOR ALL 6R TYPE MANIPULATORS , 2000 .

[3]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[4]  Lydia E. Kavraki,et al.  A randomized kinematics‐based approach to pharmacophore‐constrained conformational search and database screening , 2000 .

[5]  Dinesh Manocha,et al.  Efficient inverse kinematics for general 6R manipulators , 1994, IEEE Trans. Robotics Autom..

[6]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[7]  Clément Gosselin,et al.  On the Determination of the Workspace of Complex Planar Robotic Manipulators , 1998 .

[8]  Hong Y. Lee,et al.  A new vector theory for the analysis of spatial mechanisms , 1988 .

[9]  H. Kwakernaak,et al.  Polynomial J-spectral factorization , 1994, IEEE Trans. Autom. Control..

[10]  J. Moult,et al.  An algorithm for determining the conformation of polypeptide segments in proteins by systematic search , 1986, Proteins.

[11]  N. Go,et al.  Ring Closure and Local Conformational Deformations of Chain Molecules , 1970 .

[12]  M. Gajhede,et al.  Amylosucrase, a Glucan-synthesizing Enzyme from the α-Amylase Family* , 2001, The Journal of Biological Chemistry.

[13]  Nancy M. Amato,et al.  Ligand binding with OBPRM and user input , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[14]  A. Sali,et al.  Modeling of loops in protein structures , 2000, Protein science : a publication of the Protein Society.

[15]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[16]  Sandor Vajda,et al.  CAPRI: A Critical Assessment of PRedicted Interactions , 2003, Proteins.

[17]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[18]  A. Bogmér,et al.  On control problems , 1989 .

[19]  Jean-Claude Latombe,et al.  Efficient maintenance and self-collision testing for Kinematic Chains , 2002, SCG '02.

[20]  Baldomero Oliva,et al.  An automated classification of the structure of protein loops. , 1997, Journal of molecular biology.

[21]  Madhusudan Raghavan,et al.  On the design of manipulators for applying wrenches , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[22]  Harold A. Scheraga,et al.  Conformational Analysis of Macromolecules. II. The Rotational Isomeric States of the Normal Hydrocarbons , 1966 .

[23]  G. Swaminathan Robot Motion Planning , 2006 .

[24]  Magali Remaud-Simeon,et al.  Oligosaccharide and Sucrose Complexes of Amylosucrase , 2002, The Journal of Biological Chemistry.

[25]  Jean-Pierre Merlet,et al.  Determination of the orientation workspace of parallel manipulators , 1995, J. Intell. Robotic Syst..

[26]  Ming Zhang,et al.  A New Method for Fast and Accurate Derivation of Molecular Conformations , 2002, J. Chem. Inf. Comput. Sci..

[27]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[28]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[29]  G. N. Ramachandran,et al.  Conformation of polypeptides and proteins. , 1968, Advances in protein chemistry.

[30]  Qiang Zheng,et al.  Loop closure via bond scaling and relaxation , 1993, J. Comput. Chem..

[31]  C. Tanford Macromolecules , 1994, Nature.

[32]  Adrian A Canutescu,et al.  Cyclic coordinate descent: A robotics algorithm for protein loop closure , 2003, Protein science : a publication of the Protein Society.

[33]  Antonio Bicchi,et al.  Control Problems in Robotics , 2003, Springer Tracts in Advanced Robotics.

[34]  Thierry Siméon,et al.  Visibility-based probabilistic roadmaps for motion planning , 2000, Adv. Robotics.

[35]  H. Scheraga,et al.  Exact analytical loop closure in proteins using polynomial equations , 1999 .

[36]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[37]  M. Karplus,et al.  PDB-based protein loop prediction: parameters for selection and methods for optimization. , 1997, Journal of molecular biology.

[38]  A. Bondi van der Waals Volumes and Radii , 1964 .

[39]  T Schlick,et al.  The loop opening/closing motion of the enzyme triosephosphate isomerase. , 1998, Biophysical journal.

[40]  Nancy M. Amato,et al.  Using Motion Planning to Study Protein Folding Pathways , 2002, J. Comput. Biol..

[41]  Leo Joskowicz,et al.  Computational Kinematics , 1991, Artif. Intell..

[42]  M. Karplus,et al.  Prediction of the folding of short polypeptide segments by uniform conformational sampling , 1987, Biopolymers.

[43]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[44]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[45]  C. Levinthal,et al.  Predicting antibody hypervariable loop conformation. I. Ensembles of random conformations for ringlike structures , 1987, Biopolymers.

[46]  Gordon M. Crippen,et al.  Exploring the conformation space of cycloalkanes by linearized embedding , 1992 .

[47]  A. Sali,et al.  Protein Structure Prediction and Structural Genomics , 2001, Science.

[48]  P E Wright,et al.  Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. , 2001, Biochemistry.

[49]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[50]  S. A. Stoeter,et al.  Proceedings - IEEE International Conference on Robotics and Automation , 2003 .

[51]  Robert J. Schilling,et al.  Fundamentals of Robotics , 1990 .

[52]  Jean-Claude Latombe,et al.  Capturing molecular energy landscapes with probabilistic conformational roadmaps , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[53]  Carme Torras,et al.  Collision detection algorithms for motion planning , 1998 .

[54]  Jean-Paul Laumond,et al.  Algorithms for Robotic Motion and Manipulation , 1997 .

[55]  Jean-Claude Latombe,et al.  Stochastic roadmap simulation: an efficient representation and algorithm for analyzing molecular motion , 2002, RECOMB '02.

[56]  Carme Torras,et al.  On Finding the Set of Inverse Kinematic Solutions for Redundant Manipulators , 1993 .