Optimal experiment design under process noise using riccati differential equations

In this paper, we present a numerical method for optimal experiment design of nonlinear dynamic processes. Here, we suggest to optimize an approximation of the predicted variance–covariance matrix of the parameter estimates, which can be computed as the solution of a Riccati differential equation. In contrast to existing approaches, the proposed method allows us to take process noise into account and requires less derivative states to be computed compared to the traditional Fisher information matrix based approach. This process noise is assumed to be a time-varying random disturbance which is not known at the time when the experiment is designed. We illustrate the technique by solving an optimal experiment design problem for a fed-batch bioreactor benchmark case study. Here, we concentrate on how the optimal input design and associated accuracy of the parameter identification is influenced when process noise is present.

[1]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[2]  Jan Van Impe,et al.  Computation of optimal identification experiments for nonlinear dynamic process models: a stochastic global optimization approach , 2002 .

[3]  義彦 宮里 1999 American Control Conference(1999 ACC) , 1999 .

[4]  Johannes P. Schlöder,et al.  Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes , 2004, Optim. Methods Softw..

[5]  Martin B. Zarrop,et al.  Optimal experiment design for dynamic system identification , 1977 .

[6]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[7]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[8]  A Kremling,et al.  Optimal experimental design with the sigma point method. , 2009, IET systems biology.

[9]  Filip Logist,et al.  Optimal experiment design for dynamic bioprocesses: A multi-objective approach , 2012 .

[10]  Naomi Ehrich Leonard,et al.  Proceedings Of The 2000 American Control Conference , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[11]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..

[12]  Filip Logist,et al.  Fast Pareto set generation for nonlinear optimal control problems with multiple objectives , 2010 .

[13]  G. R. Sullivan,et al.  The development of an efficient optimal control package , 1978 .

[14]  Axel Munack,et al.  Optimal Feeding Strategy for Identification of Monod-Type Models by Fed-Batch Experiments , 1989 .

[15]  H. L. Lucas,et al.  DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS , 1959 .

[16]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[17]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[18]  J. Kiefer,et al.  Optimum Designs in Regression Problems , 1959 .

[19]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[20]  Sandro Macchietto,et al.  The optimal design of dynamic experiments , 1989 .

[21]  Matthias Reuss,et al.  Optimal Experimental Design for Parameter Estimation in Unstructured Growth Models , 1994 .

[22]  Hans Bock,et al.  Numerical methods for optimum experimental design in DAE systems , 2000 .

[23]  Jan Van Impe,et al.  Feed rate optimization for fed-batch bioreactors: from optimal process performance to optimal parameter identification , 1998 .

[24]  Sandro Macchietto,et al.  Model-based design of experiments for parameter precision: State of the art , 2008 .

[25]  Klaus Schittkowski,et al.  Experimental Design Tools for Ordinary and Algebraic Differential Equations , 2007 .

[26]  Eva Balsa-Canto,et al.  Optimal design of dynamic experiments for improved estimation of kinetic parameters of thermal degradation , 2007 .

[27]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[28]  Axel Munack,et al.  Design of Optimal Dynamical Experiments for Parameter Estimation , 1989, 1989 American Control Conference.

[29]  R. A. Fisher,et al.  Design of Experiments , 1936 .

[30]  Lennart Ljung,et al.  Optimal experiment designs with respect to the intended model application , 1986, Autom..

[31]  Jan Van Impe,et al.  Robust multi-objective optimal control of uncertain (bio)chemical processes , 2011 .

[32]  Rudibert King,et al.  Derivative-free optimal experimental design , 2008 .

[33]  George I. N. Rozvany,et al.  Structural and Multidisciplinary Optimization , 1995 .

[34]  Michael Jackson,et al.  Optimal Design of Experiments , 1994 .

[35]  R. Mehra Optimal inputs for linear system identification , 1974 .

[36]  Kristel Bernaerts,et al.  Optimal Fed Batch Experiment Design for Estimation of Monod Kinetics of Azospirillumbrasilense: From Theory to Practice , 2007, Biotechnology progress.

[37]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[38]  Eric Walter,et al.  Qualitative and quantitative experiment design for phenomenological models - A survey , 1990, Autom..

[39]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[40]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[41]  Guido Buzzi-Ferraris,et al.  A new sequential experimental design procedure for discriminating among rival models , 1983 .

[42]  Graham C. Goodwin,et al.  Robust optimal experiment design for system identification , 2007, Autom..

[43]  Pio Forzatti,et al.  Sequential experimental design for model discrimination in the case of multiple responses , 1984 .

[44]  Eva Van Derlinden Quantifying Microbial Dynamics as a Function of Temperature: Towards an Optimal Trade-Off Between Biological and Model Complexity (Kwantificering van de microbiële dynamica in functie van temperatuur: naar een optimale balans tussen biologische complexiteit en modelcomplexiteit) , 2009 .

[45]  Hans Bock,et al.  Robustness Aspects in Parameter Estimation, Optimal Design of Experiments and Optimal Control , 2007 .