Pretrained Transformers for Text Ranking: BERT and Beyond

The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has, without exaggeration, revolutionized the fields of natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage ranking architectures and learned dense representations that attempt to perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond the typical sentence-by-sentence processing approaches used in NLP, and techniques for addressing the tradeoff between effectiveness (result quality) and efficiency (query latency). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.

[1]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[2]  Kilian Q. Weinberger,et al.  Revisiting Few-sample BERT Fine-tuning , 2020, ArXiv.

[3]  Jimmy J. Lin,et al.  DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference , 2020, ACL.

[4]  Ellen M. Voorhees,et al.  On Building Fair and Reusable Test Collections using Bandit Techniques , 2018, CIKM.

[5]  Jimmy J. Lin,et al.  End-to-End Open-Domain Question Answering with BERTserini , 2019, NAACL.

[6]  Christopher J. C. Burges,et al.  From RankNet to LambdaRank to LambdaMART: An Overview , 2010 .

[7]  Luis Gravano,et al.  Snowball: extracting relations from large plain-text collections , 2000, DL '00.

[8]  Zeynep Akkalyoncu Yilmaz Cross-Domain Sentence Modeling for Relevance Transfer with BERT , 2019 .

[9]  Dragos Stefan Munteanu,et al.  Improving Machine Translation Performance by Exploiting Non-Parallel Corpora , 2005, CL.

[10]  Gerard Salton,et al.  Automatic Content Analysis in Information Retrieval , 1968 .

[11]  M. E. Maron,et al.  On Relevance, Probabilistic Indexing and Information Retrieval , 1960, JACM.

[12]  Donna Harman,et al.  TREC 2018 News Track Overview , 2018, TREC.

[13]  Jimmy J. Lin,et al.  Document Ranking with a Pretrained Sequence-to-Sequence Model , 2020, FINDINGS.

[14]  Andrew Trotman,et al.  Towards an Efficient and Effective Search Engine , 2012, OSIR@SIGIR.

[15]  Jimmy J. Lin,et al.  Covidex: Neural Ranking Models and Keyword Search Infrastructure for the COVID-19 Open Research Dataset , 2020, SDP.

[16]  Kevin Gimpel,et al.  Towards Universal Paraphrastic Sentence Embeddings , 2015, ICLR.

[17]  Alessandro Moschitti,et al.  The Cascade Transformer: an Application for Efficient Answer Sentence Selection , 2020, ACL.

[18]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[19]  Bowen Zhou,et al.  ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence Pairs , 2015, TACL.

[20]  Ellen M. Voorhees,et al.  Overview of the TREC 2004 Robust Track. , 2004 .

[21]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[22]  Jimmy J. Lin Is searching full text more effective than searching abstracts? , 2009, BMC Bioinformatics.

[23]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[24]  Leif Azzopardi,et al.  A comparison of user and system query performance predictions , 2010, CIKM '10.

[25]  Bhaskar Mitra,et al.  An Updated Duet Model for Passage Re-ranking , 2019, ArXiv.

[26]  Maosong Sun,et al.  XQA: A Cross-lingual Open-domain Question Answering Dataset , 2019, ACL.

[27]  Christian Plaunt,et al.  Subtopic structuring for full-length document access , 1993, SIGIR.

[28]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[29]  Jimmy J. Lin,et al.  What Would Elsa Do? Freezing Layers During Transformer Fine-Tuning , 2019, ArXiv.

[30]  Quoc V. Le,et al.  Distributed Representations of Sentences and Documents , 2014, ICML.

[31]  Rich Caruana,et al.  Do Deep Nets Really Need to be Deep? , 2013, NIPS.

[32]  Rong Jin,et al.  Title language model for information retrieval , 2002, SIGIR '02.

[33]  Gregory N. Hullender,et al.  Learning to rank using gradient descent , 2005, ICML.

[34]  Bhaskar Mitra,et al.  Improving Document Ranking with Dual Word Embeddings , 2016, WWW.

[35]  Fabian Steeg,et al.  Information-Retrieval: Evaluation , 2010 .

[36]  Sharon E Straus,et al.  Evidence-Based Medicine: How to Practice and Teach It , 2010 .

[37]  Jimmy J. Lin,et al.  Assessor Differences and User Preferences in Tweet Timeline Generation , 2015, SIGIR.

[38]  David A. Moore,et al.  BERT Goes to Law School: Quantifying the Competitive Advantage of Access to Large Legal Corpora in Contract Understanding , 2019, ArXiv.

[39]  Filip Radlinski,et al.  Evaluating the accuracy of implicit feedback from clicks and query reformulations in Web search , 2007, TOIS.

[40]  Md. Mustafizur Rahman,et al.  Neural information retrieval: at the end of the early years , 2017, Information Retrieval Journal.

[41]  Yiqun Liu,et al.  RepBERT: Contextualized Text Embeddings for First-Stage Retrieval , 2020, ArXiv.

[42]  Ming-Wei Chang,et al.  Natural Questions: A Benchmark for Question Answering Research , 2019, TACL.

[43]  Amanda Spink,et al.  Regions and levels: Measuring and mapping users' relevance judgments , 2001, J. Assoc. Inf. Sci. Technol..

[44]  Jimmy J. Lin,et al.  Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering , 2019, ArXiv.

[45]  Jörg Tiedemann,et al.  Bitext Alignment , 2011, Synthesis Lectures on Human Language Technologies.

[46]  Justin Zobel,et al.  How reliable are the results of large-scale information retrieval experiments? , 1998, SIGIR '98.

[47]  Mark D. Smucker,et al.  Evaluating sentence-level relevance feedback for high-recall information retrieval , 2018, Inf. Retr. J..

[48]  Jason Weston,et al.  Poly-encoders: Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring , 2020, ICLR.

[49]  Kristian J. Hammond,et al.  Question Answering from Frequently Asked Question Files: Experiences with the FAQ FINDER System , 1997, AI Mag..

[50]  Andrew Turpin,et al.  Do batch and user evaluations give the same results? , 2000, SIGIR '00.

[51]  James Henderson The Unstoppable Rise of Computational Linguistics in Deep Learning , 2020, ACL.

[52]  Ellen M. Voorhees,et al.  Overview of the TREC 2020 Precision Medicine Track , 2017, TREC.

[53]  J. Shane Culpepper,et al.  Assessing efficiency–effectiveness tradeoffs in multi-stage retrieval systems without using relevance judgments , 2015, Information Retrieval Journal.

[54]  Nicola Ferro,et al.  Rank-Biased Precision Reloaded: Reproducibility and Generalization , 2015, ECIR.

[55]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[56]  Jason Weston,et al.  StarSpace: Embed All The Things! , 2017, AAAI.

[57]  David D. Lewis The TREC-4 Filtering Track , 1995, TREC.

[58]  Craig MacDonald,et al.  Toward Reproducible Baselines: The Open-Source IR Reproducibility Challenge , 2016, ECIR.

[59]  Jimmy J. Lin,et al.  Cross-Domain Modeling of Sentence-Level Evidence for Document Retrieval , 2019, EMNLP.

[60]  Yuandong Tian,et al.  Playing the lottery with rewards and multiple languages: lottery tickets in RL and NLP , 2019, ICLR.

[61]  Raffaele Perego,et al.  Training Curricula for Open Domain Answer Re-Ranking , 2020, SIGIR.

[62]  Norbert Fuhr,et al.  Optimum polynomial retrieval functions based on the probability ranking principle , 1989, TOIS.

[63]  Jimmy J. Lin,et al.  Aligning Cross-Lingual Entities with Multi-Aspect Information , 2019, EMNLP.

[64]  John Cocke,et al.  A Statistical Approach to Machine Translation , 1990, CL.

[65]  W. Bruce Croft,et al.  Improving the effectiveness of information retrieval with local context analysis , 2000, TOIS.

[66]  Howard R. Turtle,et al.  Yet Another Comparison of Lucene and Indri Performance , 2012, OSIR@SIGIR.

[67]  Bhaskar Mitra,et al.  Incorporating Query Term Independence Assumption for Efficient Retrieval and Ranking using Deep Neural Networks , 2019, ArXiv.

[68]  Diyi Yang,et al.  Hierarchical Attention Networks for Document Classification , 2016, NAACL.

[69]  Hang Li,et al.  Semantic Matching in Search , 2014, SMIR@SIGIR.

[70]  William Hersh,et al.  Information Retrieval: A Biomedical and Health Perspective , 2020, Health Informatics.

[71]  Danqi Chen,et al.  Dense Passage Retrieval for Open-Domain Question Answering , 2020, EMNLP.

[72]  Mark Sanderson,et al.  Information retrieval system evaluation: effort, sensitivity, and reliability , 2005, SIGIR '05.

[73]  Stephen E. Robertson,et al.  Okapi at TREC-6 Automatic ad hoc, VLC, routing, filtering and QSDR , 1997, TREC.

[74]  James Allan,et al.  Topic detection and tracking: event-based information organization , 2002 .

[75]  S. Robertson The probability ranking principle in IR , 1997 .

[76]  Kyunghyun Cho,et al.  Mixout: Effective Regularization to Finetune Large-scale Pretrained Language Models , 2020, ICLR.

[77]  Matthias Hagen,et al.  The Effect of Content-Equivalent Near-Duplicates on the Evaluation of Search Engines , 2020, ECIR.

[78]  Luyu Gao,et al.  EARL: Speedup Transformer-based Rankers with Pre-computed Representation , 2020, ArXiv.

[79]  Ross Wilkinson,et al.  Effective retrieval of structured documents , 1994, SIGIR '94.

[80]  Dan Klein,et al.  Train Large, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers , 2020, ArXiv.

[81]  Michael Carbin,et al.  The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks , 2018, ICLR.

[82]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[83]  Filip Radlinski,et al.  Query chains: learning to rank from implicit feedback , 2005, KDD '05.

[84]  Jimmy J. Lin,et al.  Capreolus: A Toolkit for End-to-End Neural Ad Hoc Retrieval , 2020, WSDM.

[85]  Yu Cheng,et al.  Patient Knowledge Distillation for BERT Model Compression , 2019, EMNLP.

[86]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[87]  Xiaodong Liu,et al.  Domain-Specific Language Model Pretraining for Biomedical Natural Language Processing , 2020, ArXiv.

[88]  José Luis Vicedo González,et al.  TREC: Experiment and evaluation in information retrieval , 2007, J. Assoc. Inf. Sci. Technol..

[89]  Cristina V. Lopes,et al.  Bagging gradient-boosted trees for high precision, low variance ranking models , 2011, SIGIR.

[90]  Maosong Sun,et al.  How Does NLP Benefit Legal System: A Summary of Legal Artificial Intelligence , 2020, ACL.

[91]  Yejin Choi,et al.  The Curious Case of Neural Text Degeneration , 2019, ICLR.

[92]  Jimmy J. Lin,et al.  Of Ivory and Smurfs: Loxodontan MapReduce Experiments for Web Search , 2009, TREC.

[93]  Samuel R. Bowman,et al.  Sentence Encoders on STILTs: Supplementary Training on Intermediate Labeled-data Tasks , 2018, ArXiv.

[94]  Bryan Catanzaro,et al.  Zero-shot Text Classification With Generative Language Models , 2019, ArXiv.

[95]  Bernhard Schölkopf,et al.  Fidelity-Weighted Learning , 2017, ICLR.

[96]  Ron Kohavi,et al.  Practical guide to controlled experiments on the web: listen to your customers not to the hippo , 2007, KDD '07.

[97]  Justin Zobel,et al.  Redundant documents and search effectiveness , 2005, CIKM '05.

[98]  Luyu Gao,et al.  Understanding BERT Rankers Under Distillation , 2020, ICTIR.

[99]  Ming-Wei Chang,et al.  Latent Retrieval for Weakly Supervised Open Domain Question Answering , 2019, ACL.

[100]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[101]  Jason Weston,et al.  Real-time Inference in Multi-sentence Tasks with Deep Pretrained Transformers , 2019, ArXiv.

[102]  Stephen E. Robertson,et al.  The TREC 2002 Filtering Track Report , 2002, TREC.

[103]  Robert F. Simmons,et al.  Answering English questions by computer: a survey , 1965, CACM.

[104]  Ion Androutsopoulos,et al.  Deep Relevance Ranking Using Enhanced Document-Query Interactions , 2018, EMNLP.

[105]  Charles L. A. Clarke,et al.  Efficient and effective spam filtering and re-ranking for large web datasets , 2010, Information Retrieval.

[106]  Kyunghyun Cho,et al.  Passage Re-ranking with BERT , 2019, ArXiv.

[107]  W. Bruce Croft,et al.  Investigating the Successes and Failures of BERT for Passage Re-Ranking , 2019, ArXiv.

[108]  Andrew Trotman,et al.  Anytime Ranking for Impact-Ordered Indexes , 2015, ICTIR.

[109]  Andreas Vlachos,et al.  FEVER: a Large-scale Dataset for Fact Extraction and VERification , 2018, NAACL.

[110]  Nazli Goharian,et al.  ADRTrace: Detecting Expected and Unexpected Adverse Drug Reactions from User Reviews on Social Media Sites , 2013, ECIR.

[111]  Sebastian Ruder,et al.  Universal Language Model Fine-tuning for Text Classification , 2018, ACL.

[112]  David A. McAllester,et al.  On-The-Fly Information Retrieval Augmentation for Language Models , 2020, NUSE.

[113]  Ellen M. Voorhees,et al.  Overview of the Seventh Text REtrieval Conference , 1998 .

[114]  Allan Hanbury,et al.  Local Self-Attention over Long Text for Efficient Document Retrieval , 2020, SIGIR.

[115]  Tetsuya Sakai,et al.  Statistical reform in information retrieval? , 2014, SIGF.

[116]  Alistair Moffat,et al.  Score Aggregation Techniques in Retrieval Experimentation , 2009, ADC.

[117]  Jimmy J. Lin,et al.  Which BM25 Do You Mean? A Large-Scale Reproducibility Study of Scoring Variants , 2020, ECIR.

[118]  Mirella Lapata,et al.  Hierarchical Transformers for Multi-Document Summarization , 2019, ACL.

[119]  Jimmy J. Lin,et al.  Anserini: Enabling the Use of Lucene for Information Retrieval Research , 2017, SIGIR.

[120]  Lukasz Kaiser,et al.  Generating Wikipedia by Summarizing Long Sequences , 2018, ICLR.

[121]  Chenyan Xiong,et al.  Selective Weak Supervision for Neural Information Retrieval , 2020, WWW.

[122]  Yelong Shen,et al.  A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval , 2014, CIKM.

[123]  Mohand Boughanem,et al.  MarkedBERT: Integrating Traditional IR Cues in Pre-trained Language Models for Passage Retrieval , 2020, SIGIR.

[124]  Tie-Yan Liu,et al.  Taking Notes on the Fly Helps BERT Pre-training , 2020, ArXiv.

[125]  Diane Kelly,et al.  Methods for Evaluating Interactive Information Retrieval Systems with Users , 2009, Found. Trends Inf. Retr..

[126]  Richard E. Susskind EXPERT SYSTEMS IN LAW: A JURISPRUDENTIAL APPROACH TO ARTIFICIAL INTELLIGENCE AND LEGAL REASONING , 1986 .

[127]  Quoc V. Le,et al.  ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators , 2020, ICLR.

[128]  Ming-Wei Chang,et al.  REALM: Retrieval-Augmented Language Model Pre-Training , 2020, ICML.

[129]  Tefko Saracevic,et al.  RELEVANCE: A review of and a framework for the thinking on the notion in information science , 1997, J. Am. Soc. Inf. Sci..

[130]  Mark Dredze,et al.  Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT , 2019, EMNLP.

[131]  Qun Liu,et al.  TinyBERT: Distilling BERT for Natural Language Understanding , 2020, EMNLP.

[132]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[133]  Allan Hanbury,et al.  Let's measure run time! Extending the IR replicability infrastructure to include performance aspects , 2019, OSIRRC@SIGIR.

[134]  Alistair Moffat,et al.  Rank-biased precision for measurement of retrieval effectiveness , 2008, TOIS.

[135]  Albert N. Link,et al.  Economic impact assessment of NIST's text REtrieval conference (TREC) program. Final report , 2010 .

[136]  Jimmy J. Lin,et al.  Multi-Stage Document Ranking with BERT , 2019, ArXiv.

[137]  Wilson L. Taylor,et al.  “Cloze Procedure”: A New Tool for Measuring Readability , 1953 .

[138]  William R. Hersh,et al.  TREC GENOMICS Track Overview , 2003, TREC.

[139]  Jimmy J. Lin,et al.  Pairwise Word Interaction Modeling with Deep Neural Networks for Semantic Similarity Measurement , 2016, NAACL.

[140]  Dipanjan Das,et al.  BERT Rediscovers the Classical NLP Pipeline , 2019, ACL.

[141]  Ellen M. Voorhees,et al.  Overview of the seventh text retrieval conference (trec-7) [on-line] , 1999 .

[142]  Christopher J. C. Burges,et al.  High accuracy retrieval with multiple nested ranker , 2006, SIGIR.

[143]  Marti A. Hearst,et al.  TREC 2007 Genomics Track Overview , 2007, TREC.

[144]  Zhuyun Dai,et al.  Rethinking Query Expansion for BERT Reranking , 2020, ECIR.

[145]  Rico Sennrich,et al.  Neural Machine Translation of Rare Words with Subword Units , 2015, ACL.

[146]  Omer Levy,et al.  What Does BERT Look at? An Analysis of BERT’s Attention , 2019, BlackboxNLP@ACL.

[147]  Raffaele Perego,et al.  Quality versus efficiency in document scoring with learning-to-rank models , 2016, Inf. Process. Manag..

[148]  Ming Zhou,et al.  HIBERT: Document Level Pre-training of Hierarchical Bidirectional Transformers for Document Summarization , 2019, ACL.

[149]  Randy Goebel,et al.  Statute Law Information Retrieval and Entailment , 2019, ICAIL.

[150]  Douglas W. Oard,et al.  TREC 2006 Legal Track Overview , 2006, TREC.

[151]  Jun Xu,et al.  Modeling Diverse Relevance Patterns in Ad-hoc Retrieval , 2018, SIGIR.

[152]  Jason Weston,et al.  Reading Wikipedia to Answer Open-Domain Questions , 2017, ACL.

[153]  Nan Hua,et al.  Universal Sentence Encoder for English , 2018, EMNLP.

[154]  Mona Attariyan,et al.  Parameter-Efficient Transfer Learning for NLP , 2019, ICML.

[155]  Florian Boudin,et al.  Keyphrase Generation for Scientific Document Retrieval , 2020, ACL.

[156]  Eero Sormunen,et al.  Liberal relevance criteria of TREC -: counting on negligible documents? , 2002, SIGIR '02.

[157]  Mark Andrew Greenwood,et al.  Open-domain question answering , 2005 .

[158]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[159]  Elizabeth Sadler Project Blacklight: a next generation library catalog at a first generation university , 2009, Libr. Hi Tech.

[160]  Charles L. A. Clarke,et al.  Reciprocal rank fusion outperforms condorcet and individual rank learning methods , 2009, SIGIR.

[161]  Jimmy J. Lin,et al.  Simple Applications of BERT for Ad Hoc Document Retrieval , 2019, ArXiv.

[162]  Liu Yang,et al.  Beyond 512 Tokens: Siamese Multi-depth Transformer-based Hierarchical Encoder for Document Matching , 2020, ArXiv.

[163]  Norbert Fuhr,et al.  Some Common Mistakes In IR Evaluation, And How They Can Be Avoided , 2018, SIGIR Forum.

[164]  Taku Kudo,et al.  SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing , 2018, EMNLP.

[165]  Xiaocheng Feng,et al.  CodeBERT: A Pre-Trained Model for Programming and Natural Languages , 2020, EMNLP.

[166]  Ellen M. Voorhees Variations in relevance judgments and the measurement of retrieval effectiveness , 2000, Inf. Process. Manag..

[167]  Sebastiano Vigna,et al.  MG4J at TREC 2005 , 2005, TREC.

[168]  Cheng Li,et al.  Semantic Text Matching for Long-Form Documents , 2019, WWW.

[169]  Jakob Uszkoreit,et al.  Large Scale Parallel Document Mining for Machine Translation , 2010, COLING.

[170]  Jimmy J. Lin,et al.  Distilling Task-Specific Knowledge from BERT into Simple Neural Networks , 2019, ArXiv.

[171]  Jimmy J. Lin,et al.  The Impact of Score Ties on Repeatability in Document Ranking , 2019, SIGIR.

[172]  Jason Weston,et al.  Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring , 2019 .

[173]  Gerard Salton,et al.  On the use of spreading activation methods in automatic information , 1988, SIGIR '88.

[174]  Jimmy J. Lin,et al.  Why Not Grab a Free Lunch? Mining Large Corpora for Parallel Sentences to Improve Translation Modeling , 2012, NAACL.

[175]  Jimmy J. Lin,et al.  Old dogs are great at new tricks: column stores for ir prototyping , 2014, SIGIR.

[176]  John D. Lafferty,et al.  Information retrieval as statistical translation , 1999, SIGIR '99.

[177]  Bhaskar Mitra,et al.  An Introduction to Neural Information Retrieval , 2018, Found. Trends Inf. Retr..

[178]  Guido Zuccon,et al.  The Lucene for Information Access and Retrieval Research (LIARR) Workshop at SIGIR 2017 , 2017, SIGIR.

[179]  Anna Rumshisky,et al.  Revealing the Dark Secrets of BERT , 2019, EMNLP.

[180]  Nicholas J. Belkin,et al.  Ask for Information Retrieval: Part II. Results of a Design Study , 1982, J. Documentation.

[181]  Marie-Francine Moens,et al.  Monolingual and Cross-Lingual Information Retrieval Models Based on (Bilingual) Word Embeddings , 2015, SIGIR.

[182]  Huan Wang,et al.  MKD: a Multi-Task Knowledge Distillation Approach for Pretrained Language Models , 2019 .

[183]  Andrew Yates,et al.  Content-Based Weak Supervision for Ad-Hoc Re-Ranking , 2017, SIGIR.

[184]  Iz Beltagy,et al.  SciBERT: A Pretrained Language Model for Scientific Text , 2019, EMNLP.

[185]  Iryna Gurevych,et al.  Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks , 2019, EMNLP.

[186]  Xueqi Cheng,et al.  A Study of MatchPyramid Models on Ad-hoc Retrieval , 2016, ArXiv.

[187]  Donna K. Harman,et al.  Information Retrieval: The Early Years , 2019, Found. Trends Inf. Retr..

[188]  Mohammad Shoeybi,et al.  Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism , 2019, ArXiv.

[189]  Christopher D. Manning,et al.  Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks , 2015, ACL.

[190]  Alistair Moffat,et al.  Improvements that don't add up: ad-hoc retrieval results since 1998 , 2009, CIKM.

[191]  Fernando Diaz,et al.  UMass at TREC 2004: Novelty and HARD , 2004, TREC.

[192]  Michael E. Lesk,et al.  Relevance assessments and retrieval system evaluation , 1968, Inf. Storage Retr..

[193]  Jimmy J. Lin,et al.  Overview of the TREC-2014 Microblog Track , 2014, TREC.

[194]  Ido Dagan,et al.  The Third PASCAL Recognizing Textual Entailment Challenge , 2007, ACL-PASCAL@ACL.

[195]  Mária Bieliková,et al.  A Comprehensive Survey and Classification of Approaches for Community Question Answering , 2016, ACM Trans. Web.

[196]  Lukasz Kaiser,et al.  Reformer: The Efficient Transformer , 2020, ICLR.

[197]  Ellen M. Voorhees,et al.  Vector Expansion in a Large Collection , 1992, TREC.

[198]  Sebastian Riedel,et al.  Language Models as Knowledge Bases? , 2019, EMNLP.

[199]  Peter Bailey,et al.  Relevance assessment: are judges exchangeable and does it matter , 2008, SIGIR '08.

[200]  Oren Barkan,et al.  Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding , 2019, AAAI.

[201]  Jimmy J. Lin,et al.  Document Expansion by Query Prediction , 2019, ArXiv.

[202]  Eneko Agirre,et al.  SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation , 2017, *SEMEVAL.

[203]  Chenliang Li,et al.  IDST at TREC 2019 Deep Learning Track: Deep Cascade Ranking with Generation-based Document Expansion and Pre-trained Language Modeling , 2019, TREC.

[204]  Raffaele Perego,et al.  Efficient Document Re-Ranking for Transformers by Precomputing Term Representations , 2020, SIGIR.

[205]  C. J. van Rijsbergen,et al.  Report on the need for and provision of an 'ideal' information retrieval test collection , 1975 .

[206]  Doug Downey,et al.  Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks , 2020, ACL.

[207]  Guoyin Wang,et al.  Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms , 2018, ACL.

[208]  Hinrich Schutze,et al.  Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference , 2020, ArXiv.

[209]  JUSTIN ZOBEL,et al.  Inverted files for text search engines , 2006, CSUR.

[210]  George Kurian,et al.  Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation , 2016, ArXiv.

[211]  Ellen M. Voorhees,et al.  Variations in relevance judgments and the measurement of retrieval effectiveness , 1998, SIGIR '98.

[212]  Charles L. A. Clarke,et al.  Relevance ranking for one to three term queries , 1997, Inf. Process. Manag..

[213]  Kui-Lam Kwok The use of title and cited titles as document representation for automatic classification , 1975, Inf. Process. Manag..

[214]  A. Trotman IR Evaluation Using Multiple Assessors per Topic , 2007 .

[215]  Ellen M. Voorhees,et al.  Query expansion using lexical-semantic relations , 1994, SIGIR '94.

[216]  Kirk Roberts,et al.  TREC-COVID , 2020, SIGIR Forum.

[217]  Berkant Barla Cambazoglu,et al.  Early exit optimizations for additive machine learned ranking systems , 2010, WSDM '10.

[218]  Mohand Boughanem,et al.  Tie-Breaking Bias: Effect of an Uncontrolled Parameter on Information Retrieval Evaluation , 2010, CLEF.

[219]  Roy Schwartz,et al.  The Right Tool for the Job: Matching Model and Instance Complexities , 2020, ACL.

[220]  Oren Etzioni,et al.  CORD-19: The Covid-19 Open Research Dataset , 2020, NLPCOVID19.

[221]  Mi-Young Kim,et al.  Overview of COLIEE 2017 , 2017, COLIEE@ICAIL.

[222]  S. Satya‐Murti Evidence-based Medicine: How to Practice and Teach EBM , 1997 .

[223]  Joelle Pineau,et al.  The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems , 2015, SIGDIAL Conference.

[224]  Zhiyuan Liu,et al.  Entity-Duet Neural Ranking: Understanding the Role of Knowledge Graph Semantics in Neural Information Retrieval , 2018, ACL.

[225]  Hamed Zamani,et al.  Conformer-Kernel with Query Term Independence for Document Retrieval , 2020, ArXiv.

[226]  W. Bruce Croft,et al.  Combining the language model and inference network approaches to retrieval , 2004, Inf. Process. Manag..

[227]  Samuel R. Bowman,et al.  A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference , 2017, NAACL.

[228]  Sandeep Subramanian,et al.  On Extractive and Abstractive Neural Document Summarization with Transformer Language Models , 2020, EMNLP.

[229]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[230]  Jianfeng Gao,et al.  A Human Generated MAchine Reading COmprehension Dataset , 2018 .

[231]  Allan Hanbury,et al.  Interpretable & Time-Budget-Constrained Contextualization for Re-Ranking , 2020, ECAI.

[232]  Bhaskar Mitra,et al.  Overview of the TREC 2019 deep learning track , 2020, ArXiv.

[233]  Jimmy J. Lin,et al.  Overview of the TREC-2013 Microblog Track , 2013, TREC.

[234]  Joel Mackenzie,et al.  Efficiency Implications of Term Weighting for Passage Retrieval , 2020, SIGIR.

[235]  Brian Christopher Smith,et al.  Query by humming: musical information retrieval in an audio database , 1995, MULTIMEDIA '95.

[236]  Ellen M. Voorhees,et al.  Overview of the TREC 2002 Question Answering Track , 2003, TREC.

[237]  Juan M. Fernández-Luna,et al.  Lucene4IR: Developing Information Retrieval Evaluation Resources using Lucene , 2017, SIGIR Forum.

[238]  Jimmy J. Lin,et al.  Cross-Lingual Relevance Transfer for Document Retrieval , 2019, ArXiv.

[239]  Nick Craswell,et al.  Learning to Match using Local and Distributed Representations of Text for Web Search , 2016, WWW.

[240]  Michele Banko,et al.  Scaling to Very Very Large Corpora for Natural Language Disambiguation , 2001, ACL.

[241]  Mark Chen,et al.  Language Models are Few-Shot Learners , 2020, NeurIPS.

[242]  Jimmy J. Lin,et al.  Approximate Nearest Neighbor Search and Lightweight Dense Vector Reranking in Multi-Stage Retrieval Architectures , 2020, ICTIR.

[243]  James Allan,et al.  A Study of Neural Matching Models for Cross-lingual IR , 2020, SIGIR.

[244]  Luo Si,et al.  Cascade Ranking for Operational E-commerce Search , 2017, KDD.

[245]  Thomas Demeester,et al.  Representation learning for very short texts using weighted word embedding aggregation , 2016, Pattern Recognit. Lett..

[246]  Jimmy J. Lin,et al.  From MAXSCORE to Block-Max Wand: The Story of How Lucene Significantly Improved Query Evaluation Performance , 2020, ECIR.

[247]  James Allan,et al.  TREC 2017 Common Core Track Overview , 2017, TREC.

[248]  Jimmy J. Lin,et al.  A cascade ranking model for efficient ranked retrieval , 2011, SIGIR.

[249]  Guido Zuccon,et al.  A Test Collection for Evaluating Legal Case Law Search , 2018, SIGIR.

[250]  eXascale Infolab,et al.  Relation Extraction Using Distant Supervision , 2018, ACM Comput. Surv..

[251]  Randy Goebel,et al.  COLIEE-2018: Evaluation of the Competition on Legal Information Extraction and Entailment , 2018, JSAI-isAI Workshops.

[252]  Omer Levy,et al.  Structural Language Models of Code , 2020, ICML.

[253]  Jacob Eisenstein,et al.  Sparse, Dense, and Attentional Representations for Text Retrieval , 2020, Transactions of the Association for Computational Linguistics.

[254]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[255]  Alexander J. Smola,et al.  Scalable clustering of news search results , 2011, WSDM '11.

[256]  H. J. Scudder,et al.  Probability of error of some adaptive pattern-recognition machines , 1965, IEEE Trans. Inf. Theory.

[257]  Markus Krötzsch,et al.  Wikidata , 2014, Commun. ACM.

[258]  Chris Buckley,et al.  Implementation of the SMART Information Retrieval System , 1985 .

[259]  Ben He,et al.  Terrier : A High Performance and Scalable Information Retrieval Platform , 2022 .

[260]  Javed A. Aslam,et al.  Condorcet fusion for improved retrieval , 2002, CIKM '02.

[261]  Mayank Bawa,et al.  LSH forest: self-tuning indexes for similarity search , 2005, WWW '05.

[262]  Ming-Wei Chang,et al.  Well-Read Students Learn Better: On the Importance of Pre-training Compact Models , 2019 .

[263]  Iadh Ounis,et al.  Overview of the TREC 2011 Microblog Track , 2011, TREC.

[264]  Randy Goebel,et al.  A Summary of the COLIEE 2019 Competition , 2019, JSAI-isAI Workshops.

[265]  W. Bruce Croft,et al.  From Neural Re-Ranking to Neural Ranking: Learning a Sparse Representation for Inverted Indexing , 2018, CIKM.

[266]  André Paim Lemos,et al.  An anatomy for neural search engines , 2019, Inf. Sci..

[267]  Jimmy Lin,et al.  Simple Techniques for Cross-Collection Relevance Feedback , 2019, ECIR.

[268]  Alessandro Moschitti,et al.  TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection , 2019, AAAI.

[269]  Jimmy J. Lin,et al.  Automatic management of partitioned, replicated search services , 2011, SoCC.

[270]  Mandar Mitra,et al.  Word Embedding based Generalized Language Model for Information Retrieval , 2015, SIGIR.

[271]  Yao Zhao,et al.  PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization , 2020, ICML.

[272]  Kilian Q. Weinberger,et al.  The Greedy Miser: Learning under Test-time Budgets , 2012, ICML.

[273]  Yiming Yang,et al.  XLNet: Generalized Autoregressive Pretraining for Language Understanding , 2019, NeurIPS.

[274]  Zhiyuan Liu,et al.  Understanding the Behaviors of BERT in Ranking , 2019, ArXiv.

[275]  Ji Ma,et al.  Zero-shot Neural Retrieval via Domain-targeted Synthetic Query Generation , 2020, ArXiv.

[276]  Zhuyun Dai,et al.  Context-Aware Sentence/Passage Term Importance Estimation For First Stage Retrieval , 2019, ArXiv.

[277]  Amit Singhal,et al.  Document expansion for speech retrieval , 1999, SIGIR '99.

[278]  Abdur Chowdhury,et al.  A picture of search , 2006, InfoScale '06.

[279]  Daniel Gildea,et al.  Automatic Labeling of Semantic Roles , 2000, ACL.

[280]  Quoc V. Le,et al.  Semi-supervised Sequence Learning , 2015, NIPS.

[281]  Allan Hanbury,et al.  On the Effect of Low-Frequency Terms on Neural-IR Models , 2019, SIGIR.

[282]  Jimmy J. Lin,et al.  Critically Examining the "Neural Hype": Weak Baselines and the Additivity of Effectiveness Gains from Neural Ranking Models , 2019, SIGIR.

[283]  Omer Levy,et al.  RoBERTa: A Robustly Optimized BERT Pretraining Approach , 2019, ArXiv.

[284]  Yury A. Malkov,et al.  Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[285]  Robert S. Taylor The process of asking questions , 1962 .

[286]  Randy Goebel,et al.  Combining Similarity and Transformer Methods for Case Law Entailment , 2019, ICAIL.

[287]  Luyu Gao,et al.  Complementing Lexical Retrieval with Semantic Residual Embedding , 2020, ArXiv.

[288]  Marc-Allen Cartright,et al.  Galago: A Modular Distributed Processing and Retrieval System , 2012, OSIR@SIGIR.

[289]  W. Bruce Croft,et al.  Indri at TREC 2004: Terabyte Track , 2004, TREC.

[290]  Georgios Balikas,et al.  An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition , 2015, BMC Bioinformatics.

[291]  Xiangnan He,et al.  Deep Learning for Matching in Search and Recommendation , 2020, Found. Trends Inf. Retr..

[292]  Zhiyuan Liu,et al.  CAIL2018: A Large-Scale Legal Dataset for Judgment Prediction , 2018, ArXiv.

[293]  Hang Li Learning to Rank for Information Retrieval and Natural Language Processing , 2011, Synthesis Lectures on Human Language Technologies.

[294]  D. Cheriton From doc2query to docTTTTTquery , 2019 .

[295]  Jimmy J. Lin,et al.  The Neural Hype and Comparisons Against Weak Baselines , 2019, SIGIR Forum.

[296]  Mandar Mitra,et al.  To Clean or Not to Clean , 2018, ACM J. Data Inf. Qual..

[297]  R'emi Louf,et al.  HuggingFace's Transformers: State-of-the-art Natural Language Processing , 2019, ArXiv.

[298]  Gerard Salton,et al.  A new comparison between conventional indexing (MEDLARS) and automatic text processing (SMART) , 1972, J. Am. Soc. Inf. Sci..

[299]  Gerard de Melo,et al.  PACRR: A Position-Aware Neural IR Model for Relevance Matching , 2017, EMNLP.

[300]  Arman Cohan,et al.  Longformer: The Long-Document Transformer , 2020, ArXiv.

[301]  Hans Peter Luhn,et al.  The Automatic Creation of Literature Abstracts , 1958, IBM J. Res. Dev..

[302]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[303]  Susan T. Dumais,et al.  The vocabulary problem in human-system communication , 1987, CACM.

[304]  Nicholas J. Belkin,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[305]  Stephen E. Robertson,et al.  GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .

[306]  Qi Chen,et al.  BISON: BM25-weighted Self-Attention Framework for Multi-Fields Document Search , 2020, ArXiv.

[307]  Daniel Gillick,et al.  End-to-End Retrieval in Continuous Space , 2018, ArXiv.

[308]  Jimmy J. Lin,et al.  Anserini , 2018, Journal of Data and Information Quality.

[309]  Matei Zaharia,et al.  ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT , 2020, SIGIR.

[310]  Zhiyuan Liu,et al.  Convolutional Neural Networks for Soft-Matching N-Grams in Ad-hoc Search , 2018, WSDM.

[311]  Nazli Goharian,et al.  Teaching a New Dog Old Tricks: Resurrecting Multilingual Retrieval Using Zero-Shot Learning , 2020, ECIR.

[312]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[313]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[314]  Craig MacDonald,et al.  From Puppy to Maturity: Experiences in Developing Terrier , 2012, OSIR@SIGIR.

[315]  Christopher Ré,et al.  Snorkel: Rapid Training Data Creation with Weak Supervision , 2017, Proc. VLDB Endow..

[316]  Garrison W. Cottrell,et al.  Fusion Via a Linear Combination of Scores , 1999, Information Retrieval.

[317]  Emine Yilmaz,et al.  On the Reliability of Test Collections for Evaluating Systems of Different Types , 2020, SIGIR.

[318]  Andrew Trotman,et al.  Improvements to BM25 and Language Models Examined , 2014, ADCS.

[319]  David Yarowsky,et al.  Unsupervised Word Sense Disambiguation Rivaling Supervised Methods , 1995, ACL.

[320]  Craig MacDonald,et al.  Overview of the TREC-2012 Microblog Track , 2012, Text Retrieval Conference.

[321]  Jamie Callan,et al.  Deeper Text Understanding for IR with Contextual Neural Language Modeling , 2019, SIGIR.

[322]  Ellen Riloff,et al.  Automatically Generating Extraction Patterns from Untagged Text , 1996, AAAI/IAAI, Vol. 2.

[323]  Luyu Gao,et al.  Modularized Transfomer-based Ranking Framework , 2020, EMNLP.

[324]  Katrina Fenlon,et al.  Improving retrieval of short texts through document expansion , 2012, SIGIR '12.

[325]  Chris Callison-Burch,et al.  Paraphrasing with Bilingual Parallel Corpora , 2005, ACL.

[326]  Xianpei Han,et al.  BERT-QE: Contextualized Query Expansion for Document Re-ranking , 2020, FINDINGS.

[327]  Jimmy J. Lin,et al.  Overview of the TREC 2017 Real-Time Summarization Track , 2017, TREC.

[328]  W. Bruce Croft,et al.  Neural Ranking Models with Weak Supervision , 2017, SIGIR.

[329]  Fredric C. Gey,et al.  Inferring probability of relevance using the method of logistic regression , 1994, SIGIR '94.

[330]  James P. Callan,et al.  Context-Aware Document Term Weighting for Ad-Hoc Search , 2020, WWW.

[331]  Tefko Saracevic,et al.  The Notion of Relevance in Information Science: Everybody knows what relevance is. But, what is it really? , 2016, The Notion of Relevance in Information Science.

[332]  Jian Zhang,et al.  SQuAD: 100,000+ Questions for Machine Comprehension of Text , 2016, EMNLP.

[333]  D. Sackett Evidence-Based Medicine: How to Practice and Teach EBM , 2018 .

[334]  Jeff Johnson,et al.  Billion-Scale Similarity Search with GPUs , 2017, IEEE Transactions on Big Data.

[335]  J. Shane Culpepper,et al.  Query Driven Algorithm Selection in Early Stage Retrieval , 2018, WSDM.

[336]  Jimmy J. Lin,et al.  PubMed related articles: a probabilistic topic-based model for content similarity , 2007, BMC Bioinformatics.

[337]  Colin Raffel,et al.  Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer , 2019, J. Mach. Learn. Res..

[338]  Kevin Gimpel,et al.  ALBERT: A Lite BERT for Self-supervised Learning of Language Representations , 2019, ICLR.

[339]  Noah A. Smith,et al.  The Web as a Parallel Corpus , 2003, CL.

[340]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[341]  Richard K. Belew,et al.  A connectionist approach to conceptual information retrieval , 1987, ICAIL '87.

[342]  Li Yang,et al.  Big Bird: Transformers for Longer Sequences , 2020, NeurIPS.

[343]  Gerard de Melo,et al.  Co-PACRR: A Context-Aware Neural IR Model for Ad-hoc Retrieval , 2017, WSDM.

[344]  Alessandro Moschitti,et al.  Reranking for Efficient Transformer-based Answer Selection , 2020, SIGIR.

[345]  W. Bruce Croft,et al.  A Markov random field model for term dependencies , 2005, SIGIR '05.

[346]  Pascal Vincent,et al.  The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training , 2009, AISTATS.

[347]  Justin Zobel,et al.  Passage retrieval revisited , 1997, SIGIR '97.

[348]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[349]  Zhiyuan Liu,et al.  End-to-End Neural Ad-hoc Ranking with Kernel Pooling , 2017, SIGIR.

[350]  Nazli Goharian,et al.  CEDR: Contextualized Embeddings for Document Ranking , 2019, SIGIR.

[351]  Wanxiang Che,et al.  Cross-Lingual Machine Reading Comprehension , 2019, EMNLP/IJCNLP.

[352]  Hang Li,et al.  Deep Learning for Matching in Search and Recommendation , 2018, SIGIR.

[353]  Andrew Trotman,et al.  A Comparison of Document-at-a-Time and Score-at-a-Time Query Evaluation , 2017, WSDM.

[354]  Ye Li,et al.  Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval , 2020, ArXiv.

[355]  Yiqun Liu,et al.  Leveraging Passage-level Cumulative Gain for Document Ranking , 2020, WWW.

[356]  Fabio Crestani,et al.  “Is this document relevant?…probably”: a survey of probabilistic models in information retrieval , 1998, CSUR.

[357]  Ellen M. Voorhees,et al.  Bias and the limits of pooling for large collections , 2007, Information Retrieval.

[358]  Joelle Pineau,et al.  The Second Conversational Intelligence Challenge (ConvAI2) , 2019, The NeurIPS '18 Competition.

[359]  W. Bruce Croft,et al.  Discovering key concepts in verbose queries , 2008, SIGIR '08.

[360]  Mary Williamson,et al.  Recipes for Building an Open-Domain Chatbot , 2020, EACL.

[361]  Lidan Wang,et al.  Learning to efficiently rank , 2010, SIGIR.

[362]  Alec Radford,et al.  Improving Language Understanding by Generative Pre-Training , 2018 .

[363]  Thorsten Joachims,et al.  A General Framework for Counterfactual Learning-to-Rank , 2018, SIGIR.

[364]  Edouard Grave,et al.  Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering , 2020, EACL.

[365]  W. Bruce Croft,et al.  A Deep Relevance Matching Model for Ad-hoc Retrieval , 2016, CIKM.

[366]  Mark D. Smucker,et al.  Effective User Interaction for High-Recall Retrieval: Less is More , 2018, CIKM.

[367]  Craig MacDonald,et al.  Efficient and effective retrieval using selective pruning , 2013, WSDM.

[368]  Nicholas J. Belkin,et al.  Ask for Information Retrieval: Part I. Background and Theory , 1997, J. Documentation.

[369]  Jianfeng Gao,et al.  Domain Adaptation via Pseudo In-Domain Data Selection , 2011, EMNLP.

[370]  Robert J. Gaizauskas,et al.  Coupling information retrieval and information extraction: A new text technology for gathering information from the web , 1997, RIAO.

[371]  Jianfeng Gao,et al.  Dialog System Technology Challenge 7 , 2019, ArXiv.

[372]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[373]  Andrew Trotman,et al.  Supporting Interoperability Between Open-Source Search Engines with the Common Index File Format , 2020, SIGIR.

[374]  Luo Si,et al.  Review-based Question Generation with Adaptive Instance Transfer and Augmentation , 2020, ACL.

[375]  Yiqun Liu,et al.  An Analysis of BERT in Document Ranking , 2020, SIGIR.

[376]  Edward M. Housman,et al.  State of the Art in Selective Dissemination of Information , 1970, IEEE Transactions on Engineering Writing and Speech.

[377]  GhemawatSanjay,et al.  The Google file system , 2003 .

[378]  Hugo Zaragoza,et al.  The Probabilistic Relevance Framework: BM25 and Beyond , 2009, Found. Trends Inf. Retr..

[379]  James Allan,et al.  When Will Information Retrieval Be "Good Enough"? User Effectiveness As a Function of Retrieval Accuracy , 2005 .

[380]  Raffaele Perego,et al.  Expansion via Prediction of Importance with Contextualization , 2020, SIGIR.

[381]  Kenton Lee,et al.  A BERT Baseline for the Natural Questions , 2019, ArXiv.

[382]  Sanjeev Arora,et al.  A Simple but Tough-to-Beat Baseline for Sentence Embeddings , 2017, ICLR.

[383]  Hoa Trang Dang,et al.  Overview of DUC 2005 , 2005 .

[384]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[385]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[386]  Sanja Fidler,et al.  Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[387]  Eneko Agirre,et al.  SemEval-2012 Task 6: A Pilot on Semantic Textual Similarity , 2012, *SEMEVAL.

[388]  Fedor Moiseev,et al.  Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned , 2019, ACL.

[389]  D. Sackett,et al.  Evidence based medicine: what it is and what it isn't , 1996, BMJ.

[390]  Garrison W. Cottrell,et al.  Automatic combination of multiple ranked retrieval systems , 1994, SIGIR '94.

[391]  Piotr Indyk,et al.  Similarity Search in High Dimensions via Hashing , 1999, VLDB.

[392]  Kirk Roberts,et al.  TREC-COVID: rationale and structure of an information retrieval shared task for COVID-19 , 2020, J. Am. Medical Informatics Assoc..

[393]  Azadeh Shakery,et al.  Distilling Knowledge for Fast Retrieval-based Chat-bots , 2020, SIGIR.

[394]  Canjia Li,et al.  PARADE: Passage Representation Aggregation for Document Reranking , 2020, ArXiv.

[395]  John C. Henderson,et al.  Direct Maximization of Average Precision by Hill-Climbing, with a Comparison to a Maximum Entropy Approach , 2004, HLT-NAACL.

[396]  J. Shane Culpepper,et al.  Efficient Cost-Aware Cascade Ranking in Multi-Stage Retrieval , 2017, SIGIR.

[397]  Yann Dauphin,et al.  Hierarchical Neural Story Generation , 2018, ACL.

[398]  Fei Xia,et al.  A Comparison of Head Transducers and Transfer for a Limited Domain Translation Application , 1997, ACL.

[399]  Jimmy J. Lin,et al.  The Simplest Thing That Can Possibly Work: Pseudo-Relevance Feedback Using Text Classification , 2019, ArXiv.

[400]  Jimmy J. Lin,et al.  Effectiveness/efficiency tradeoffs for candidate generation in multi-stage retrieval architectures , 2013, SIGIR.

[401]  Ben He,et al.  NPRF: A Neural Pseudo Relevance Feedback Framework for Ad-hoc Information Retrieval , 2018, EMNLP.

[402]  Jaewoo Kang,et al.  BioBERT: a pre-trained biomedical language representation model for biomedical text mining , 2019, Bioinform..

[403]  Eva Schlinger,et al.  How Multilingual is Multilingual BERT? , 2019, ACL.

[404]  Nazli Goharian,et al.  SLEDGE: A Simple Yet Effective Baseline for Coronavirus Scientific Knowledge Search , 2020, ArXiv.

[405]  James P. Callan,et al.  Passage-level evidence in document retrieval , 1994, SIGIR '94.

[406]  Larry P. Heck,et al.  Learning deep structured semantic models for web search using clickthrough data , 2013, CIKM.

[407]  Hal Daumé,et al.  Deep Unordered Composition Rivals Syntactic Methods for Text Classification , 2015, ACL.

[408]  Dimitris Pappas,et al.  AUEB at BioASQ 7: Document and Snippet Retrieval , 2019, PKDD/ECML Workshops.

[409]  Kristina Toutanova,et al.  Extracting Parallel Sentences from Comparable Corpora using Document Level Alignment , 2010, NAACL.

[410]  Bhaskar Mitra,et al.  A Dual Embedding Space Model for Document Ranking , 2016, ArXiv.

[411]  Andrew Trotman,et al.  Micro‐ and macro‐optimizations of SaaT search , 2019, Softw. Pract. Exp..

[412]  Sergey Brin,et al.  Extracting Patterns and Relations from the World Wide Web , 1998, WebDB.

[413]  Nicholas Jing Yuan,et al.  Distant Supervision for Multi-Stage Fine-Tuning in Retrieval-Based Question Answering , 2020, WWW.

[414]  Kawin Ethayarajh,et al.  Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline , 2018, Rep4NLP@ACL.

[415]  Pompeu Casanovas,et al.  Law and the Semantic Web: Legal Ontologies, Methodologies, Legal Information Retrieval, and Applications , 2005, Law and the Semantic Web.

[416]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[417]  Inderjeet Mani,et al.  SUMMAC: a text summarization evaluation , 2002, Natural Language Engineering.

[418]  Douglas W. Oard,et al.  Overview of the TREC 2011 Legal Track , 2011, TREC.

[419]  Jiawei Han,et al.  Entity Linking with a Knowledge Base: Issues, Techniques, and Solutions , 2015, IEEE Transactions on Knowledge and Data Engineering.

[420]  Christopher Potts,et al.  A large annotated corpus for learning natural language inference , 2015, EMNLP.

[421]  Allan Hanbury,et al.  TU Wien @ TREC Deep Learning '19 - Simple Contextualization for Re-ranking , 2019, TREC.

[422]  Cícero Nogueira dos Santos,et al.  Semantic Role Labeling , 2012 .

[423]  Matthew Henderson,et al.  Efficient Natural Language Response Suggestion for Smart Reply , 2017, ArXiv.

[424]  Geoffrey Zweig,et al.  Linguistic Regularities in Continuous Space Word Representations , 2013, NAACL.

[425]  James Allan,et al.  Find-similar: similarity browsing as a search tool , 2006, SIGIR.

[426]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[427]  Thomas Wolf,et al.  DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter , 2019, ArXiv.