On-line data registration in OUTDOOR environment

In the paper an algorithm of 3D data registration based on CUDA implementation is shown. The research is related to the problem of collecting 3D data with laser measurement system mounted on rotated head, to be used in mobile robot applications. Assumed performance of data registration algorithm is achieved, therefore it can used as On-line. The ICP (Iterative Closest Point) approach is chosen as registration method. Computation is based on massively parallel architecture of NVIDIA CUDA. The presented concept of 3D data matching is based on parallel computation used for fast nearest neighbor search. Nearest neighbor search procedure is using 3D space decomposition into cubic buckets, therefore the time of matching is deterministic.

[1]  Andreas Nüchter,et al.  GPU-Accelerated Nearest Neighbor Search for 3D Registration , 2009, ICVS.

[2]  Nico Blodow,et al.  Towards 3D Point cloud based object maps for household environments , 2008, Robotics Auton. Syst..

[3]  Ian D. Reid,et al.  On combining visual SLAM and visual odometry , 2010, 2010 IEEE International Conference on Robotics and Automation.

[4]  Bernhard Kainz,et al.  Automatic Differentiation for GPU-Accelerated 2D/3D Registration , 2008 .

[5]  Soon-Yong Park,et al.  Real-time 3D registration using GPU , 2011, Machine Vision and Applications.

[6]  Janusz Bedkowski,et al.  Methodology of control and supervision of web connected mobile robots with CUDA technology application , 2011 .

[7]  J. Bedkowski,et al.  Augmented Reality Approach for Mobile Multi‐robotic System Development and Integration , 2022 .

[8]  Andreas Nüchter,et al.  Automatic appearance‐based loop detection from three‐dimensional laser data using the normal distributions transform , 2009, J. Field Robotics.

[9]  Andrew W. Fitzgibbon Robust registration of 2D and 3D point sets , 2003, Image Vis. Comput..

[10]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[11]  Nico Blodow,et al.  Aligning point cloud views using persistent feature histograms , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Andreas Nüchter,et al.  Automatic Appearance-Based Loop Detection from 3 D Laser Data Using the Normal Distributions Transform , 2009 .

[13]  Helmut Pottmann,et al.  Registration without ICP , 2004, Comput. Vis. Image Underst..

[14]  Pat Hanrahan,et al.  Photon mapping on programmable graphics hardware , 2003, HWWS '03.

[15]  Tom Duckett,et al.  A comparison of 3D registration algorithms for autonomous underground mining vehicles , 2005 .

[16]  David W. Murray,et al.  Combining monoSLAM with object recognition for scene augmentation using a wearable camera , 2010, Image Vis. Comput..

[17]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[18]  Jaime Valls Miró,et al.  BS-SLAM: Shaping the World , 2007, Robotics: Science and Systems.

[19]  Michel Barlaud,et al.  Fast k nearest neighbor search using GPU , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[20]  Joachim Hertzberg,et al.  Automatic model refinement for 3D reconstruction with mobile robots , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[21]  Jianwei Zhang,et al.  3D scene reconstruction based on a moving 2D laser range finder for service-robots , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[22]  Joachim Hertzberg,et al.  Cached k-d tree search for ICP algorithms , 2007, Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007).

[23]  Janusz Bedkowski,et al.  Improvement of the Robotic System for Disaster and Hazardous Threat Management , 2009 .

[24]  D. Hähnel,et al.  Probabilistic Matching for 3D Scan Registration , 2002 .

[25]  Nico Blodow,et al.  Learning informative point classes for the acquisition of object model maps , 2008, 2008 10th International Conference on Control, Automation, Robotics and Vision.

[26]  Georg Klein,et al.  Combining Localization with Recognition for Scene Augmentation using a Wearable Camera , 2009 .

[27]  Sebastian Thrun,et al.  A Multi-Resolution Pyramid for Outdoor Robot Terrain Perception , 2004, AAAI.

[28]  Soon-Yong Park,et al.  An accurate and fast point-to-plane registration technique , 2003, Pattern Recognit. Lett..

[29]  Yolanda González Cid,et al.  Real-time 3d SLAM with wide-angle vision , 2004 .

[30]  Achim J. Lilienthal,et al.  Vision aided 3D laser scanner based registration , 2007 .

[31]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Joachim Hertzberg,et al.  Evaluation of 3D registration reliability and speed - A comparison of ICP and NDT , 2009, 2009 IEEE International Conference on Robotics and Automation.

[33]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[34]  Tim Foley,et al.  KD-tree acceleration structures for a GPU raytracer , 2005, HWWS '05.

[35]  Wolfram Burgard,et al.  An Efficient Extension of Elevation Maps for Outdoor Terrain Mapping , 2005, FSR.

[36]  Maki K. Habib,et al.  Robotics for Risky Interventions and Environmental Surveillance , 2010 .

[37]  Andreas Nüchter,et al.  Automatic appearance-based loop detection from three-dimensional laser data using the normal distributions transform , 2009 .

[38]  Achim J. Lilienthal,et al.  Maximum Likelihood Point Cloud Acquisition from a Rotating Laser Scanner on a Moving Platform , 2009 .

[39]  Rüdiger Dillmann,et al.  A region-based SLAM algorithm capturing metric, topological, and semantic properties , 2008, 2008 IEEE International Conference on Robotics and Automation.

[40]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[41]  Tom Duckett,et al.  Scan registration for autonomous mining vehicles using 3D‐NDT , 2007, J. Field Robotics.

[42]  J BeslPaul,et al.  A Method for Registration of 3-D Shapes , 1992 .

[43]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[44]  Martial Hebert,et al.  Fully automatic registration of multiple 3D data sets , 2003, Image Vis. Comput..

[45]  Achim J. Lilienthal,et al.  Vision Aided 3D Laser Based Registration , 2007, EMCR.

[46]  Sunil Arya,et al.  Algorithms for fast vector quantization , 1993, [Proceedings] DCC `93: Data Compression Conference.

[47]  Henrik Andreasson,et al.  Local visual feature based localisation and mapping by mobile robots , 2008 .

[48]  Nico Blodow,et al.  Persistent Point Feature Histograms for 3D Point Clouds , 2008 .