Motion-model-based boundary extraction

Motion boundary extraction and optical flow computation are two subproblems of the motion recovery problem that cannot be solved independently of one another. We present a local, non-iterative algorithm that extracts motion boundaries and computes optical flow simultaneously. This is achieved by modeling a 3-D image intensity block with a general motion model that presumes locally coherent motion. Local motion coherence, which is measured by the fitness of the motion model, is the criterion we use to determine whether motion should be estimated. If not, then motion boundaries should be located. The motion boundary extraction algorithm is evaluated quantitatively and qualitatively against other existing algorithms in a scheme originally developed for edge detection.

[1]  Edward R. Dougherty,et al.  Morphological methods in image and signal processing , 1988 .

[2]  C Koch,et al.  Analog "neuronal" networks in early vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Rama Chellappa,et al.  A generalized motion model for estimating optical flow using 3-D Hermite polynomials , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[4]  Tomaso A. Poggio,et al.  Motion Field and Optical Flow: Qualitative Properties , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[6]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[7]  Rama Chellappa,et al.  A reliable optical flow algorithm using 3-D hermite polynomials , 1993 .

[8]  F. Heyden Evaluation of edge detection algorithms , 1989 .

[9]  Gilad Adiv,et al.  Inherent Ambiguities in Recovering 3-D Motion and Structure from a Noisy Flow Field , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Ralph Hartley,et al.  Segmentation of optical flow fields by pyramid linking , 1985, Pattern Recognit. Lett..

[11]  Michael J. Black,et al.  Mixture models for optical flow computation , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Brian G. Schunck,et al.  Image Flow Segmentation and Estimation by Constraint Line Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  K. Nakayama,et al.  Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis , 1974, Perception.

[14]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  David W. Murray,et al.  Scene Segmentation from Visual Motion Using Global Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Yiannis Aloimonos,et al.  Obstacle Avoidance Using Flow Field Divergence , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  A. Pentland,et al.  Robust estimation of a multi-layered motion representation , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[18]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[19]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  J. Koenderink,et al.  Extraction of motion parallax structure in the visual system I , 2004, Biological Cybernetics.

[21]  Jack Sklansky,et al.  Multiple-order derivatives for detecting local image characteristics , 1987 .

[22]  Jerry L. Potter,et al.  Velocity as a Cue to Segmentation , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Valdis Berzins,et al.  Dynamic Occlusion Analysis in Optical Flow Fields , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Kenji Mase,et al.  Unified computational theory for motion transparency and motion boundaries based on eigenenergy analysis , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  I.E. Abdou,et al.  Quantitative design and evaluation of enhancement/thresholding edge detectors , 1979, Proceedings of the IEEE.

[26]  William B. Thompson,et al.  Analysis of Accretion and Deletion at Boundaries in Dynamic Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Anselm Spoerri,et al.  The early detection of motion boundaries , 1990, ICCV 1987.

[28]  Joseph K. Kearney,et al.  Optical Flow Estimation: An Error Analysis of Gradient-Based Methods with Local Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Joachim Dengler,et al.  Estimation of discontinuous displacement vector fields with the minimum description length criterion , 1990, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  Larry S. Davis,et al.  Contour-based motion estimation , 1982, Comput. Vis. Graph. Image Process..

[31]  Shmuel Peleg,et al.  A Three-Frame Algorithm for Estimating Two-Component Image Motion , 1992, IEEE Trans. Pattern Anal. Mach. Intell..