State Estimation Using a Reduced-Order Kalman Filter

Abstract Minimizing forecast error requires accurately specifying the initial state from which the forecast is made by optimally using available observing resources to obtain the most accurate possible analysis. The Kalman filter accomplishes this for a wide class of linear systems, and experience shows that the extended Kalman filter also performs well in nonlinear systems. Unfortunately, the Kalman filter and the extended Kalman filter require computation of the time-dependent error covariance matrix, which presents a daunting computational burden. However, the dynamically relevant dimension of the forecast error system is generally far smaller than the full state dimension of the forecast model, which suggests the use of reduced-order error models to obtain near-optimal state estimators. A method is described and illustrated for implementing a Kalman filter on a reduced-order approximation of the forecast error system. This reduced-order system is obtained by balanced truncation of the Hankel operator ...

[1]  M. Verlaan,et al.  Tidal flow forecasting using reduced rank square root filters , 1997 .

[2]  T. Palmer,et al.  Singular Vectors, Metrics, and Adaptive Observations. , 1998 .

[3]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[4]  Nori,et al.  “ An Approximate Kalman Filter for Ocean Data Assimilation ; An Example with an Idealized Gulf Stream Modelt , 1995 .

[5]  C. Wunsch The Ocean Circulation Inverse Problem , 1996 .

[6]  Michael Ghil,et al.  Tracking Atmospheric Instabilities with the Kalman Filter. Part 1: Methodology and One-Layer Resultst , 1994 .

[7]  Pierre FJ Lermusiaux Data Assimilation via Error Subspace Statistical Estimation. , 1999 .

[8]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[9]  Ronald M. Errico,et al.  Transient and asymptotic perturbation growth in a simple model , 2002 .

[10]  S. Cohn,et al.  Applications of Estimation Theory to Numerical Weather Prediction , 1981 .

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[13]  Michael Ghil,et al.  Advanced data assimilation in strongly nonlinear dynamical systems , 1994 .

[14]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[15]  Michael Ghil,et al.  Advances in Sequential Estimation for Atmospheric and Oceanic Flows , 1997 .

[16]  G. North Empirical Orthogonal Functions and Normal Modes , 1984 .

[17]  D. Dee On-line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation , 1995 .

[18]  Roberto Buizza,et al.  The Singular-Vector Structure of the Atmospheric Global Circulation , 1995 .

[19]  P. Ioannou,et al.  Accurate Low-Dimensional Approximation of the Linear Dynamics of Fluid Flow , 2001 .

[20]  James A. Yorke,et al.  Preturbulence: A regime observed in a fluid flow model of Lorenz , 1979 .

[21]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[22]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[23]  Brian F. F Arrell,et al.  Perturbation Growth and Structure in Time-Dependent Flows , 1999 .

[24]  Michael K. Tippett,et al.  Low-dimensional representation of error covariance , 2000 .

[25]  Michael Ghil,et al.  Tracking Atmospheric Instabilities with the Kalman Filter. Part II: Two-Layer Results , 1996 .

[26]  R. Daley Atmospheric Data Analysis , 1991 .

[27]  Michael Ghil,et al.  Extended Kalman filtering for vortex systems. Part 1: Methodology and point vortices , 1998 .

[28]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[29]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[30]  R. Todling,et al.  Approximate Data Assimilation Schemes for Stable and Unstable Dynamics , 1996 .

[31]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[32]  A. Robinson,et al.  Data Assimilation via Error Subspace Statistical Estimation.Part I: Theory and Schemes , 1999, Monthly Weather Review.

[33]  Brian F. Farrell,et al.  Generalized Stability Theory. Part II: Nonautonomous Operators , 1996 .

[35]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[36]  Ronald M. Errico,et al.  Convergence of Singular Vectors toward Lyapunov Vectors , 1999 .