Spatiotemporal Salience via Centre-Surround Comparison of Visual Spacetime Orientations

Early delineation of the most salient portions of a temporal image stream (e.g., a video) could serve to guide subsequent processing to the most important portions of the data at hand. Toward such ends, the present paper documents an algorithm for spatiotemporal salience detection. The algorithm is based on a definition of salient regions as those that differ from their surrounding regions, with the individual regions characterized in terms of 3D, (x,y,t), measurements of visual spacetime orientation. The algorithm has been implemented in software and evaluated empirically on a publically available database for visual salience detection. The results show that the algorithm outperforms a variety of alternative algorithms and even approaches human performance.

[1]  Richard P. Wildes,et al.  Dynamic scene understanding: The role of orientation features in space and time in scene classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Richard P. Wildes,et al.  Efficient action spotting based on a spacetime oriented structure representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[4]  John K. Tsotsos,et al.  Spatiotemporal Saliency: Towards a Hierarchical Representation of Visual Saliency , 2009, WAPCV.

[5]  Pierre Baldi,et al.  Bayesian surprise attracts human attention , 2005, Vision Research.

[6]  侯一平 关于神经科学原理(PRINCIPLES OF NEUROSCIENCE)课程的介绍 , 2000 .

[7]  David G. Stork,et al.  Pattern Classification , 1973 .

[8]  Cordelia Schmid,et al.  Learning realistic human actions from movies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Jan-Olof Eklundh,et al.  Statistical background subtraction for a mobile observer , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[10]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[11]  Nikos Paragios,et al.  Background modeling and subtraction of dynamic scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[12]  Patrick Pérez,et al.  Detection and segmentation of moving objects in highly dynamic scenes , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Solomon Kullback,et al.  Information Theory and Statistics , 1970, The Mathematical Gazette.

[14]  D J Heeger,et al.  Model for the extraction of image flow. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[15]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[16]  Chin-Seng Chua,et al.  Motion detection with nonstationary background , 2003, Machine Vision and Applications.

[17]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[18]  I. Haritaoglu,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002 .

[19]  Cordelia Schmid,et al.  A Spatio-Temporal Descriptor Based on 3D-Gradients , 2008, BMVC.

[20]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[21]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[22]  Richard P. Wildes,et al.  Spacetime Texture Representation and Recognition Based on a Spatiotemporal Orientation Analysis , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  James L. Crowley,et al.  Probabilistic recognition of activity using local appearance , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[24]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[26]  Richard P. Wildes,et al.  Dynamic texture recognition based on distributions of spacetime oriented structure , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[28]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[29]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[30]  Theodore E. Cohn,et al.  Detection and identification , 1985 .

[31]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[32]  Yaser Sheikh,et al.  Bayesian modeling of dynamic scenes for object detection , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Nuno Vasconcelos,et al.  Spatiotemporal Saliency in Dynamic Scenes , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[35]  Jason J. Corso,et al.  Action bank: A high-level representation of activity in video , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[37]  L. Wixson Detecting Salient Motion by Accumulating Directionally-Consistent Flow , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Richard P. Wildes,et al.  Action Spotting and Recognition Based on a Spatiotemporal Orientation Analysis , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[40]  Thomas Deselaers,et al.  ClassCut for Unsupervised Class Segmentation , 2010, ECCV.

[41]  Andrei Zaharescu,et al.  Anomalous Behaviour Detection Using Spatiotemporal Oriented Energies, Subset Inclusion Histogram Comparison and Event-Driven Processing , 2010, ECCV.