Optimization with Genetic Algorithms of Interval Type-2 Fuzzy Logic controllers for an autonomous wheeled mobile robot: A comparison under different kinds of perturbations

We describe a tracking controller for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on type-2 fuzzy logic theory and genetic algorithms. Computer simulations are presented confirming the performance of the tracking controller and its application to different navigation problems.

[1]  Stephen Yurkovich,et al.  Fuzzy Control , 1997 .

[2]  W. L. Nelson,et al.  Local Path Control for an Autonomous Vehicle , 1988, Autonomous Robot Vehicles.

[3]  K. Kozlowski,et al.  Fuzzy logic implementation in mobile robot control , 2001, Proceedings of the Second International Workshop on Robot Motion and Control. RoMoCo'01 (IEEE Cat. No.01EX535).

[4]  A. El Hajjaji,et al.  Fuzzy control of a mobile robot: a new approach , 1997, Proceedings of the 1997 IEEE International Conference on Control Applications.

[5]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Brad Paden,et al.  Globally asymptotically stable ‘PD+’ controller for robot manipulators , 1988 .

[7]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[8]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot using neural networks , 1998, IEEE Trans. Neural Networks.

[9]  Kai-Tai Song,et al.  Heuristic fuzzy-neuro network and its application to reactive navigation of a mobile robot , 2000, Fuzzy Sets Syst..

[10]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[11]  Zhong-Ping Jiang,et al.  A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots , 2004, IEEE Transactions on Robotics and Automation.

[12]  Luis T. Aguilar,et al.  Intelligent Control of an Autonomous Mobile Robot using Type-2 Fuzzy Logic , 2006, Eng. Lett..

[13]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[14]  Oscar Castillo,et al.  Soft Computing for Control of Non-Linear Dynamical Systems , 2001 .

[15]  Graham C. Goodwin,et al.  Persistency of excitation for nonminimal models of systems having purely deterministic disturbances , 1985 .

[16]  Ricardo Martínez-Soto,et al.  Hybrid Control for an Autonomous Wheeled Mobile Robot Under Perturbed Torques , 2007, IFSA.

[17]  Olga Kosheleva,et al.  IEEE International Conference on Fuzzy Systems , 1996 .

[18]  Ching-Hung Lee,et al.  Tracking control of unicycle-modeled mobile robots using a saturation feedback controller , 2001, IEEE Trans. Control. Syst. Technol..

[19]  Ching-Chih Tsai,et al.  Trajectory tracking control of a laser-guided wheeled mobile robot , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[20]  Dongkyoung Chwa,et al.  Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates , 2004, IEEE Transactions on Control Systems Technology.

[21]  W. TanW.,et al.  Uncertain Rule-Based Fuzzy Logic Systems , 2007 .

[22]  Oscar Castillo,et al.  An Efficient Computational Method to Implement Type-2 Fuzzy Logic in Control Applications , 2007, Analysis and Design of Intelligent Systems using Soft Computing Techniques.

[23]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[24]  Norihiko Adachi,et al.  Adaptive tracking control of a nonholonomic mobile robot , 2000, IEEE Trans. Robotics Autom..