Width-3 Joint Sparse Form
暂无分享,去创建一个
[1] Helmut Prodinger,et al. The alternating greedy expansion and applications to computing digit expansions from left-to-right in cryptography , 2005, Theor. Comput. Sci..
[2] Chae Hoon Lim,et al. More Flexible Exponentiation with Precomputation , 1994, CRYPTO.
[3] Andrew D. Booth,et al. A SIGNED BINARY MULTIPLICATION TECHNIQUE , 1951 .
[4] Aggelos Kiayias,et al. Self Protecting Pirates and Black-Box Traitor Tracing , 2001, CRYPTO.
[5] Aggelos Kiayias,et al. BiTR: Built-in Tamper Resilience , 2011, IACR Cryptol. ePrint Arch..
[6] Gene Tsudik,et al. Security and Privacy in Ad-hoc and Sensor Networks, Second European Workshop, ESAS 2005, Visegrad, Hungary, July 13-14, 2005, Revised Selected Papers , 2005, ESAS.
[7] Jerome A. Solinas,et al. Efficient Arithmetic on Koblitz Curves , 2000, Des. Codes Cryptogr..
[8] Yuefei Zhu,et al. An Improved Algorithm for uP + vQ Using JSF13 , 2004, ACNS.
[9] Victor S. Miller,et al. Use of Elliptic Curves in Cryptography , 1985, CRYPTO.
[10] Tsuyoshi Takagi,et al. An Advanced Method for Joint Scalar Multiplications on Memory Constraint Devices , 2005, ESAS.
[11] J. Olivos,et al. Speeding up the computations on an elliptic curve using addition-subtraction chains , 1990, RAIRO Theor. Informatics Appl..
[12] Roberto Maria Avanzi,et al. On multi-exponentiation in cryptography , 2002, IACR Cryptol. ePrint Arch..
[13] Yvo Desmedt,et al. Advances in Cryptology — CRYPTO ’94 , 2001, Lecture Notes in Computer Science.
[14] W. Neville Holmes,et al. Binary Arithmetic , 2007, Computer.
[15] Scott A. Vanstone,et al. Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms , 2001, CRYPTO.
[16] N. Koblitz. Elliptic curve cryptosystems , 1987 .