Perspectives on system identification

[1]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[2]  J. Scherpen,et al.  Nonlinear Hilbert adjoints: properties and applications to Hankel singular value analysis , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[3]  M. Enqvist Linear models of nonlinear systems , 2005 .

[4]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[5]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[6]  Eugene A. Morelli,et al.  Aircraft system identification : theory and practice , 2006 .

[7]  Michael I. Jordan,et al.  Convexity, Classification, and Risk Bounds , 2006 .

[8]  Roland Tóth,et al.  Asymptotically optimal orthonormal basis functions for LPV system identification , 2009, Autom..

[9]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[10]  T. Johansen,et al.  Identification of non-linear system structure and parameters using regime decomposition , 1994, Autom..

[11]  N. Davies Multiple Time Series , 2005 .

[12]  Björn Wittenmark,et al.  On Self Tuning Regulators , 1973 .

[13]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[14]  S. Wold,et al.  The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses , 1984 .

[15]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[16]  Lennart Ljung,et al.  Model Identification of Linear Parameter Varying Aircraft Systems , 2006 .

[17]  Michel Gevers,et al.  A personal view on the development of system identification 1 , 2003 .

[18]  P. Parrilo,et al.  Minimizing Polynomial Functions , 2001, Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science.

[19]  Genevieve Gorrell Linköping Studies in Science and Technology Generalized Hebbian Algorithm for Dimensionality Reduction in Natural Language Processing , 2022 .

[20]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[21]  Bassam Bamieh,et al.  Identification of linear parameter varying models , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[22]  Lennart Ljung,et al.  Estimating Linear Time-invariant Models of Nonlinear Time-varying Systems , 2001, Eur. J. Control.

[23]  Christopher Edwards,et al.  Dynamic Sliding Mode Control for a Class of Systems with Mismatched Uncertainty , 2005, Eur. J. Control.

[24]  T. Cipra Statistical Analysis of Time Series , 2010 .

[25]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[26]  M. Gevers,et al.  A personal view of the development of system identification: A 30-year journey through an exciting field , 2006, IEEE Control Systems.

[27]  G. Marinoschi An identification problem , 2005 .

[28]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[29]  H. Akaike A new look at the statistical model identification , 1974 .

[30]  Bo Wahlberg,et al.  On Identification of Cascade Systems , 2008 .

[31]  Roderick Murray-Smith,et al.  Multiple Model Approaches to Modelling and Control , 1997 .

[32]  Alberto Bemporad,et al.  Identification of piecewise affine systems via mixed-integer programming , 2004, Autom..

[33]  G. Yule On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer's Sunspot Numbers , 1927 .

[34]  George Cybenko,et al.  Just-in-Time Learning and Estimation , 1996 .

[35]  A. Wald,et al.  On the Statistical Treatment of Linear Stochastic Difference Equations , 1943 .

[36]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[37]  Pablo A. Parrilo,et al.  Initialization of Physical Parameter Estimates , 2003 .

[38]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[39]  Alberto Bemporad,et al.  A bounded-error approach to piecewise affine system identification , 2005, IEEE Transactions on Automatic Control.

[40]  R. Shah,et al.  Least Squares Support Vector Machines , 2022 .

[41]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[42]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[43]  Markus Gerdin Identification and Estimation for Models Described by Differential-Algebraic Equations , 2006 .

[44]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[45]  Harry L. Trentelman,et al.  Essays on control : perspectives in the theory and its applications , 1993 .

[46]  Yves Rolain,et al.  Fast approximate identification of nonlinear systems , 2003, Autom..

[47]  P. Bartlett,et al.  Local Rademacher complexities , 2005, math/0508275.

[48]  W. Jevons,et al.  Investigations in Currency and Finance , 2010 .

[49]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[50]  C. Granger,et al.  Co-integration and error correction: representation, estimation and testing , 1987 .

[51]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[52]  B. Schölkopf,et al.  Advances in kernel methods: support vector learning , 1999 .

[53]  Karl Johan Åström,et al.  Numerical Identification of Linear Dynamic Systems from Normal Operating Records , 1965 .

[54]  Kumpati S. Narendra,et al.  Neural networks in control systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[55]  Klaus Schittkowski,et al.  Numerical Data Fitting in Dynamical Systems , 2002 .

[56]  Graham C. Goodwin,et al.  Estimated Transfer Functions with Application to Model Order Selection , 1992 .

[57]  Tarja Susi Linköping Studies in Science and Technology Dissertation No. 1019 , 2006 .

[58]  Jacob Roll,et al.  Nonlinear system identification via direct weight optimization , 2005, Autom..

[59]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[60]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[61]  Michel Gevers,et al.  Towards a Joint Design of Identification and Control , 1993 .

[62]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[63]  Christophe Andrieu,et al.  Particle methods for change detection, system identification, and control , 2004, Proceedings of the IEEE.

[64]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[65]  G. Wahba Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV , 1999 .

[66]  T. W. Anderson,et al.  Statistical analysis of time series , 1972 .

[67]  Michel Gevers,et al.  Identification for Control: From the Early Achievements to the Revival of Experiment Design , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[68]  Lennart Ljung Linear Time-Invariant Models of Non-Linear Time-Varying Systems , 2001 .

[69]  K. Poolla,et al.  A KERNEL BASED APPROACH TO STRUCTURED NONLINEAR SYSTEM IDENTIFICATION PART I: ALGORITHMS , 2006 .

[70]  M. G. Kendall,et al.  A Study in the Analysis of Stationary Time-Series. , 1955 .

[71]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[72]  R. Allen,et al.  Statistical Confluence Analysis by means of Complete Regression Systems , 1935 .

[73]  Lennart Ljung,et al.  System identification toolbox for use with MATLAB , 1988 .

[74]  John F. MacGregor,et al.  Data-based methods for process analysis, monitoring and control , 2003 .

[75]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[76]  Chee-Yee Chong,et al.  Sensor networks: evolution, opportunities, and challenges , 2003, Proc. IEEE.

[77]  K. Poolla,et al.  A KERNEL BASED APPROACH TO STRUCTURED NONLINEAR SYSTEM IDENTIFICATION PART II: CONVERGENCE AND CONSISTENCY , 2006 .

[78]  Lawton H. Lee,et al.  Identification of Linear Parameter-Varying Systems Using Nonlinear Programming , 1999 .

[79]  Alexandre Megretski,et al.  A Quasi-Convex Optimization Approach to Parameterized Model Order Reduction , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[80]  Thomas Bo Schön,et al.  Maximum Likelihood Nonlinear System Estimation , 2006 .

[81]  Manfred Deistler,et al.  System Identification and Time Series Analysis: Past, Present, and Future , 2002 .

[82]  Peter A. Fritzson,et al.  Principles of object-oriented modeling and simulation with Modelica 2.1 , 2004 .

[83]  W. Larimore System Identification, Reduced-Order Filtering and Modeling via Canonical Variate Analysis , 1983, 1983 American Control Conference.