On adaptive loop transfer recovery using Kalman filter-based disturbance accommodating control

An adaptive loop transfer recovery (LTR) approach for uncertain systems using the Kalman filter-based disturbance accommodating control scheme is presented. This study shows that the full LTR property of disturbance accommodating control is invariant to system uncertainties and external disturbances acting on the system. Also presented here is an adaptive LTR scheme, where the system process noise intensity matrix is updated online to achieve full LTR. Numerical simulations are presented to verify the superiority of the approach compared to the traditional linear quadratic regulator/LTR.

[1]  A. Davari,et al.  Design of linear adaptive controller for nonlinear systems , 2003, Proceedings of the 35th Southeastern Symposium on System Theory, 2003..

[2]  L. R. Ray Stability robustness of uncertain LQG/LTR systems , 1993 .

[3]  John C. Doyle,et al.  Guaranteed margins for LQG regulators , 1978 .

[4]  Hossein Arabalibeik,et al.  Improved temperature control of a PWR nuclear reactor using an LQG/LTR based controller , 2003 .

[5]  J. Sorrells Comparison of contemporary adaptive control design techniques , 1989, [1989] Proceedings. The Twenty-First Southeastern Symposium on System Theory.

[6]  C. D. Johnson,et al.  Accomodation of external disturbances in linear regulator and servomechanism problems , 1971 .

[7]  Meng Zhang,et al.  LQG/LTR Flight Controller Optimal Design Based on Differential Evolution Algorithm , 2010, 2010 International Conference on Intelligent Computation Technology and Automation.

[8]  A. Rachid Comments on the loop transfer recovery , 1995, IEEE Trans. Autom. Control..

[9]  Ali Saberi,et al.  Observer design for loop transfer recovery and for uncertain dynamical systems , 1990 .

[10]  Eugene Lavretsky,et al.  Adaptive Output Feedback Design Using Asymptotic Properties of LQG/LTR Controllers , 2012, IEEE Transactions on Automatic Control.

[11]  Anthony J. Calise,et al.  Adaptive Loop Transfer Recovery , 2012 .

[12]  Imad M. Jaimoukha,et al.  A Study on LQG/LTR Control for Damping Inter-Area Oscillations in Power Systems , 2007, IEEE Transactions on Control Systems Technology.

[13]  John L. Crassidis,et al.  Stochastic Disturbance Accommodating Control Using a Kalman Estimator , 2008 .

[14]  James E. Sorrells,et al.  Design of Disturbance Accommodating Controllers for Stochastic Environments , 1989, 1989 American Control Conference.

[15]  Spilios Theodoulis,et al.  Robust gain scheduled control of a space launcher by introducing LQG/LTR ideas in the NCF robust stabilisation problem , 2007, 2007 46th IEEE Conference on Decision and Control.

[16]  G. Stein,et al.  Robustness with observers , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[17]  John L. Crassidis,et al.  Adaptive disturbance accommodating controller for uncertain stochastic systems , 2009, 2009 American Control Conference.

[18]  Bernd Krauskopf,et al.  Sensitivity of the Generic Transport Model upset dynamics to time delay , 2014 .

[19]  G. Sohie,et al.  Generalization of the matrix inversion lemma , 1986, Proceedings of the IEEE.

[20]  J. Stoustrup,et al.  LTR design of discrete-time proportional-integral observers , 1996, IEEE Trans. Autom. Control..

[21]  Wook Hyun Kwon,et al.  Allowable parameter variations and robustness recovery in LQG regulators , 1991 .

[22]  Puneet Singla,et al.  Adaptive stochastic disturbance accommodating control , 2011, Int. J. Control.

[23]  Pradeep Kumar Misra Numerical Algorithms for Squaring-Up Non-Square Systems Part II: General Case , 1993 .

[24]  Anthony J. Calise,et al.  Adaptive control with loop transfer recovery: A Kalman filter approach , 2011, Proceedings of the 2011 American Control Conference.

[25]  Graham C. Goodwin,et al.  Loop transfer recovery design using biased and unbiased controllers , 1994 .

[26]  P. Apkarian,et al.  On a generalization of the LTR procedure , 2011, 2011 Chinese Control and Decision Conference (CCDC).

[27]  G. Stein,et al.  The LQG/LTR procedure for multivariable feedback control design , 1987 .

[28]  Jakob Stoustrup,et al.  Controller reconfiguration based on LTR design , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[29]  H.P. Joergl,et al.  LQG/LTR Controller Design for a Gas Engine , 2006, 2006 IEEE International Symposium on Industrial Electronics.

[30]  Luis Henrique de Carvalho Ferreira,et al.  An Easy-to-Use $ {\cal H}_{\infty }$/LTR Control Solution With Mixed-Sensitivity Properties , 2011, IEEE Transactions on Automatic Control.

[31]  Min-Shin Chen,et al.  Output Feedback Control of Bilinear Systems via a Bilinear LTR Observer , 2008, IEEE Transactions on Automatic Control.

[32]  G. Stein,et al.  Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .