Computational materials design of crystalline solids

Recent advances in the computational techniques and procedures for the design of functional materials are reviewed.

[1]  Kristian Sommer Thygesen,et al.  BANDGAP CALCULATIONS AND TRENDS OF ORGANOMETAL HALIDE PEROVSKITES , 2014 .

[2]  Aron Walsh,et al.  Ferroelectric materials for solar energy conversion: photoferroics revisited , 2014, 1412.6929.

[3]  Liping Yu,et al.  Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. , 2014, Nature chemistry.

[4]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  David C. Lonie,et al.  XtalOpt: An open-source evolutionary algorithm for crystal structure prediction , 2011, Comput. Phys. Commun..

[6]  S. Woodley,et al.  Crystal structure prediction from first principles. , 2008, Nature materials.

[7]  Ali Alavi,et al.  Towards an exact description of electronic wavefunctions in real solids , 2012, Nature.

[8]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .

[9]  C. Rao,et al.  New directions in solid state chemistry , 1997 .

[10]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[11]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[12]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[13]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[14]  David B. Mitzi,et al.  Templating and structural engineering in organic–inorganic perovskites , 2001 .

[15]  Liping Yu,et al.  Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. , 2012, Physical review letters.

[16]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[17]  B. Pamplin A systematic method of deriving new semiconducting compounds by structural analogy , 1964 .

[18]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[19]  A. Walsh,et al.  Ab initio thermodynamic model of Cu2ZnSnS4 , 2014, 1403.7963.

[20]  Vladan Stevanović,et al.  Material descriptors for predicting thermoelectric performance , 2015 .

[21]  Isao Tanaka,et al.  Distributions of phonon lifetimes in Brillouin zones , 2015, 1501.00691.

[22]  Li-doped Cr2MnO4: A new p-type transparent conducting oxide by computational materials design , 2013 .

[23]  K. Butler,et al.  Polymorph Engineering of TiO2: Demonstrating How Absolute Reference Potentials Are Determined by Local Coordination , 2015 .

[24]  Edward H. Sargent,et al.  Materials interface engineering for solution-processed photovoltaics , 2012, Nature.

[25]  Bryce Meredig,et al.  A hybrid computational-experimental approach for automated crystal structure solution. , 2013, Nature materials.

[26]  Gerbrand Ceder,et al.  Identification and design principles of low hole effective mass p-type transparent conducting oxides , 2013, Nature Communications.

[27]  David S. Ginley,et al.  Prediction of Flatband Potentials at Semiconductor‐Electrolyte Interfaces from Atomic Electronegativities , 1978 .

[28]  Yung-Jin Hu,et al.  In situ studies of a platform for metastable inorganic crystal growth and materials discovery , 2014, Proceedings of the National Academy of Sciences.

[29]  Anubhav Jain,et al.  Performance of genetic algorithms in search for water splitting perovskites , 2013, Journal of Materials Science.

[30]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[31]  Minghui Yang,et al.  Experimental Synthesis and Properties of Metastable CuNbN2 and Theoretical Extension to Other Ternary Copper Nitrides , 2014 .

[32]  R. Stoffel,et al.  Ab initio thermochemistry of solid-state materials. , 2010, Angewandte Chemie.

[33]  Weitao Yang,et al.  Designing molecules by optimizing potentials. , 2006, Journal of the American Chemical Society.

[34]  D. Keszler,et al.  Atomic solid state energy scale. , 2011, Journal of the American Chemical Society.

[35]  Aron Walsh,et al.  Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells , 2014, 1405.5810.

[36]  Tonio Buonassisi,et al.  Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites , 2015, 1504.02144.

[37]  Li Zhu,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[38]  Aron Walsh,et al.  Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles , 2013, 1309.4215.

[39]  A. Walsh,et al.  Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds , 2009 .

[40]  Gerbrand Ceder,et al.  The Configurational Space of Rocksalt‐Type Oxides for High‐Capacity Lithium Battery Electrodes , 2014 .

[41]  Liping Yu,et al.  Theoretical prediction and experimental realization of new stable inorganic materials using the inverse design approach. , 2013, Journal of the American Chemical Society.

[42]  A. Walsh,et al.  Vibrational spectra and lattice thermal conductivity of kesterite-structured Cu2ZnSnS4 and Cu2ZnSnSe4 , 2015 .

[43]  Thomas F. Jaramillo,et al.  New cubic perovskites for one- and two-photon water splitting using the computational materials repository , 2012 .

[44]  A. Oganov,et al.  How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.

[45]  M. Ashby MULTI-OBJECTIVE OPTIMIZATION IN MATERIAL DESIGN AND SELECTION , 2000 .

[46]  Artem R. Oganov,et al.  Unexpected Stable Stoichiometries of Sodium Chlorides , 2012, Science.

[47]  Aron Walsh,et al.  Inorganic materials: The quest for new functionality. , 2015, Nature chemistry.

[48]  Atsuto Seko,et al.  Theoretical Photovoltaic Conversion Efficiencies of ZnSnP2, CdSnP2, and Zn1-xCdxSnP2 Alloys , 2013 .

[49]  S. Woodley,et al.  Interlayer Cation Exchange Stabilizes Polar Perovskite Surfaces , 2014, Advanced materials.

[50]  D. Scanlon,et al.  (CH3NH3)2Pb(SCN)2I2: a more stable structural motif for hybrid halide photovoltaics? , 2015, The journal of physical chemistry letters.

[51]  Corey Oses,et al.  Materials Cartography: Representing and Mining Material Space Using Structural and Electronic Fingerprints , 2014, 1412.4096.

[52]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[53]  Aron Walsh,et al.  Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles , 2014, 1405.6290.