Robust optimal experiment design for system identification

This paper develops the idea of min-max robust experiment design for dynamic system identification. The idea of min-max experiment design has been explored in the statistics literature. However, the technique is virtually unknown by the engineering community and, accordingly, there has been little prior work on examining its properties when applied to dynamic system identification. This paper initiates an exploration of these ideas. The paper considers linear systems with energy (or power) bounded inputs. We assume that the parameters lie in a given compact set and optimise the worst case over this set. We also provide a detailed analysis of the solution for an illustrative one parameter example and propose a convex optimisation algorithm that can be applied more generally to a discretised approximation to the design problem. We also examine the role played by different design criteria and present a simulation example illustrating the merits of the proposed approach.

[1]  I. Glicksberg Minimax Theorem for Upper and Lower Semicontinuous Payoffs , 1950 .

[2]  J. Szép,et al.  Introduction to the theory of games , 1985 .

[3]  Thomas T. Semon,et al.  Planning of Experiments , 1959 .

[4]  H. Wynn,et al.  Maximum entropy sampling and optimal Bayesian experimental design , 2000 .

[5]  Guitton Henri Cowles commission for research in economics - Report for Period July 1, 1952 - June 30, 1954. , 1956 .

[6]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[7]  V. Fedorov,et al.  Convex design theory 1 , 1980 .

[8]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[9]  Samuel Karlin,et al.  Mathematical Methods and Theory in Games, Programming, and Economics , 1961 .

[10]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[11]  T. Koopmans Activity analysis of production and allocation : proceedings of a conference , 1952 .

[12]  Håkan Hjalmarsson,et al.  Robust Input Design Using Sum of Squares Constraints , 2006 .

[13]  Michel Gevers,et al.  Minimizing the worst-case ν-gap by optimal input design , 2003 .

[14]  T. Başar,et al.  Dynamic Noncooperative Game Theory, 2nd Edition , 1998 .

[15]  D.G. Dudley,et al.  Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.

[16]  P. Whittle Some General Points in the Theory of Optimal Experimental Design , 1973 .

[17]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[18]  Werner G. Müller,et al.  batch sequential design for a nonlinear estimation problem , 1989 .

[19]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[20]  D. Titterington,et al.  Inference and sequential design , 1985 .

[21]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[22]  Viatcheslav B. Melas Optimal designs for exponential regression , 1978 .

[23]  G. Goodwin,et al.  Optimal test signal design for linear S.I.S.O. system identification , 1973 .

[24]  H. F. Bohnenblust,et al.  GAMES WITH CONTINUOUS, CONVEX PAY-OFF , 1949 .

[25]  Michel Gevers,et al.  Identification for control , 1996 .

[26]  Martin B. Zarrop,et al.  Optimal experiment design for dynamic system identification , 1977 .

[27]  D. B. Reid Optimal inputs for system identification , 1972 .

[28]  S. Arimoto,et al.  Optimum input test signals for system identification—an information-theoretical approach , 1971 .

[29]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[30]  S. Silvey,et al.  A sequentially constructed design for estimating a nonlinear parametric function , 1980 .

[31]  Michel Gevers,et al.  Identification For Control: Optimal Input Design With Respect To A Worst-Case $\nu$-gap Cost Function , 2002, SIAM J. Control. Optim..

[32]  Xavier Bombois,et al.  Input design: from open-loop to control-oriented design , 2006 .

[33]  Christopher Edwards,et al.  Dynamic Sliding Mode Control for a Class of Systems with Mismatched Uncertainty , 2005, Eur. J. Control.

[34]  Changbao Wu,et al.  Asymptotic inference from sequential design in a nonlinear situation , 1985 .

[35]  W. Rudin Real and complex analysis , 1968 .

[36]  P. K. Gupta,et al.  Linear programming and theory of games , 1979 .

[37]  H. Wynn Results in the Theory and Construction of D‐Optimum Experimental Designs , 1972 .

[38]  Graham C. Goodwin,et al.  UTILIZING PRIOR KNOWLEDGE IN ROBUST OPTIMAL EXPERIMENT DESIGN , 2006 .

[39]  R. Kosut,et al.  How exciting can a signal really be , 1987 .

[40]  H. Chernoff Approaches in Sequential Design of Experiments , 1973 .

[41]  K. Chaloner,et al.  Optimal Bayesian design applied to logistic regression experiments , 1989 .

[42]  Thomas R. Palfrey,et al.  Economical experiments: Bayesian efficient experimental design , 1996 .

[43]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[44]  K. Chaloner,et al.  Optimum experimental designs for properties of a compartmental model. , 1993, Biometrics.

[45]  V. Levadi Design of input signals for parameter estimation , 1966 .

[46]  T. Apostol Mathematical Analysis , 1957 .

[47]  E. Walter,et al.  Robust experiment design via maximin optimization , 1988 .

[48]  Samuel Karlin 20. ON GAMES DESCRIBED BY BELL SHAPED KERNELS , 1958 .

[49]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[50]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[51]  W. J. Studden,et al.  Optimal Experimental Designs , 1966 .

[52]  Charles DeLisi,et al.  Mathematics and Computers in Biomedical Applications , 1985 .

[53]  Holger Dette,et al.  A note on maximin and Bayesian D-optimal designs in weighted polynomial regression , 2003 .

[54]  A. Wald On the Efficient Design of Statistical Investigations , 1943 .

[55]  C. Krattenthaler ADVANCED DETERMINANT CALCULUS , 1999, math/9902004.

[56]  Holger Dette,et al.  Standardized Maximin E-optimal Designs for the Michaelis Menten Model , 2002 .

[57]  R. Bartle The elements of integration and Lebesgue measure , 1995 .

[58]  J. Kiefer,et al.  The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.

[59]  Xavier Bombois,et al.  Least costly identification experiment for control , 2006, Autom..

[60]  E. Aiyoshi,et al.  Necessary conditions for min-max problems and algorithms by a relaxation procedure , 1980 .

[61]  Michel Gevers Identification for Control: From the Early Achievements to the Revival of Experiment Design , 2005, CDC 2005.

[62]  R. Gagliardi Input selection for parameter identification in discrete systems , 1966, IEEE Transactions on Automatic Control.

[63]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[64]  R. V. Churchill,et al.  Lectures on Fourier Integrals , 1959 .

[65]  G.C. Goodwin,et al.  Evaluation and comparison of robust optimal experiment design criteria , 2006, 2006 American Control Conference.

[66]  J. Kiefer General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .

[67]  Steven Vajda,et al.  Introduction to the Theory of Games , 1953 .

[68]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .