Mechanism Design via Differential Privacy

We study the role that privacy-preserving algorithms, which prevent the leakage of specific information about participants, can play in the design of mechanisms for strategic agents, which must encourage players to honestly report information. Specifically, we show that the recent notion of differential privacv, in addition to its own intrinsic virtue, can ensure that participants have limited effect on the outcome of the mechanism, and as a consequence have limited incentive to lie. More precisely, mechanisms with differential privacy are approximate dominant strategy under arbitrary player utility functions, are automatically resilient to coalitions, and easily allow repeatability. We study several special cases of the unlimited supply auction problem, providing new results for digital goods auctions, attribute auctions, and auctions with arbitrary structural constraints on the prices. As an important prelude to developing a privacy-preserving auction mechanism, we introduce and study a generalization of previous privacy work that accommodates the high sensitivity of the auction setting, where a single participant may dramatically alter the optimal fixed price, and a slight change in the offered price may take the revenue from optimal to zero.

[1]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[2]  Nabil R. Adam,et al.  Security-control methods for statistical databases: a comparative study , 1989, ACM Comput. Surv..

[3]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[4]  A. Mas-Colell,et al.  Microeconomic Theory , 1995 .

[5]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[6]  David R. Karger,et al.  An Õ(n^{3/14})-Coloring Algorithm for 3-Colorable Graphs , 1997, Information Processing Letters.

[7]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[8]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.

[9]  Carsten Lund,et al.  Proof verification and the hardness of approximation problems , 1998, JACM.

[10]  Luca Trevisan,et al.  Parallel Approximation Algorithms by Positive Linear Programming , 1998, Algorithmica.

[11]  Noam Nisan,et al.  Algorithmic mechanism design (extended abstract) , 1999, STOC '99.

[12]  David C. Parkes,et al.  iBundle: an efficient ascending price bundle auction , 1999, EC '99.

[13]  J. Schummer Almost-dominant Strategy Implementation , 1999 .

[14]  Luca Trevisan,et al.  Gadgets, Approximation, and Linear Programming , 2000, SIAM J. Comput..

[15]  Robert Krauthgamer,et al.  Private approximation of NP-hard functions , 2001, STOC '01.

[16]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[17]  Andrew V. Goldberg,et al.  Competitive auctions and digital goods , 2001, SODA '01.

[18]  Uriel Feige,et al.  On the optimality of the random hyperplane rounding technique for MAX CUT , 2002, Random Struct. Algorithms.

[19]  Joan Feigenbaum,et al.  Distributed algorithmic mechanism design: recent results and future directions , 2002, DIALM '02.

[20]  Noam Nisan,et al.  Truthful approximation mechanisms for restricted combinatorial auctions , 2008, Games Econ. Behav..

[21]  Uri Zwick,et al.  Improved Rounding Techniques for the MAX 2-SAT and MAX DI-CUT Problems , 2002, IPCO.

[22]  Felix Wu,et al.  Incentive-compatible online auctions for digital goods , 2002, SODA '02.

[23]  Vijay Kumar,et al.  Online learning in online auctions , 2003, SODA '03.

[24]  Andrew V. Goldberg,et al.  Competitiveness via consensus , 2003, SODA '03.

[25]  Noam Nisan,et al.  Towards a characterization of truthful combinatorial auctions , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[26]  Anshul Kothar,et al.  Approximately-strategyproof and tractable multi-unit auctions , 2003 .

[27]  Frank Thomson Leighton,et al.  The value of knowing a demand curve: bounds on regret for online posted-price auctions , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[28]  Éva Tardos,et al.  An approximate truthful mechanism for combinatorial auctions with single parameter agents , 2003, SODA '03.

[29]  Guy Kindler,et al.  Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[30]  Artur Czumaj,et al.  On the expected payment of mechanisms for task allocation , 2004, PODC '04.

[31]  Moses Charikar,et al.  Maximizing quadratic programs: extending Grothendieck's inequality , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[32]  Kenneth Steiglitz,et al.  Frugality in path auctions , 2004, SODA '04.

[33]  James Schummer,et al.  Almost-dominant strategy implementation: exchange economies , 2004, Games Econ. Behav..

[34]  Nicole Immorlica,et al.  First-price path auctions , 2005, EC '05.

[35]  Jason D. Hartline,et al.  From optimal limited to unlimited supply auctions , 2005, EC '05.

[36]  Uriel Feige,et al.  On the Competitive Ratio of the Random Sampling Auction , 2005, WINE.

[37]  Andrew V. Goldberg,et al.  Collusion-resistant mechanisms for single-parameter agents , 2005, SODA '05.

[38]  Noam Nisan,et al.  Online ascending auctions for gradually expiring items , 2005, SODA '05.

[39]  Avrim Blum,et al.  Near-optimal online auctions , 2005, SODA '05.

[40]  Subhash Suri,et al.  Approximately-strategyproof and tractable multi-unit auctions , 2003, EC '03.

[41]  Maria-Florina Balcan,et al.  Mechanism design via machine learning , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[42]  Amos Fiat,et al.  Derandomization of auctions , 2005, STOC '05.

[43]  Yuval Rabani,et al.  On the Hardness of Approximating Multicut and Sparsest-Cut , 2005, Computational Complexity Conference.

[44]  Michael E. Saks,et al.  Weak monotonicity suffices for truthfulness on convex domains , 2005, EC '05.

[45]  Cynthia Dwork,et al.  Practical privacy: the SuLQ framework , 2005, PODS.

[46]  Sanjeev Arora,et al.  New approximation guarantee for chromatic number , 2006, STOC '06.

[47]  Cynthia Dwork,et al.  Differential Privacy , 2006, ICALP.

[48]  Moshe Babaioff,et al.  Single-value combinatorial auctions and implementation in undominated strategies , 2006, SODA '06.

[49]  Luca Trevisan,et al.  Gowers uniformity, influence of variables, and PCPs , 2005, STOC '06.

[50]  Elchanan Mossel,et al.  Conditional hardness for approximate coloring , 2005, STOC '06.

[51]  S. Bikhchandani,et al.  Weak Monotonicity Characterizes Deterministic Dominant-Strategy Implementation , 2006 .

[52]  Alan M. Frieze,et al.  Improved approximation algorithms for MAXk-CUT and MAX BISECTION , 1995, Algorithmica.

[53]  Ryan O'Donnell,et al.  SDP gaps and UGC-hardness for MAXCUTGAIN , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[54]  Cynthia Dwork,et al.  Calibrating Noise to Sensitivity in Private Data Analysis , 2006, TCC.

[55]  Per Austrin,et al.  Balanced max 2-sat might not be the hardest , 2007, STOC '07.

[56]  Sofya Raskhodnikova,et al.  Smooth sensitivity and sampling in private data analysis , 2007, STOC '07.

[57]  Éva Tardos,et al.  Frugal path mechanisms , 2002, SODA '02.

[58]  Kunal Talwar,et al.  Consistent Weighted Sampling , 2007 .