Identity Based Threshold Ring Signature

In threshold ring signature schemes, any group of t entities spontaneously conscript arbitrarily n – t entities to generate a publicly verifiable t-out-of-n signature on behalf of the whole group, yet the actual signers remain anonymous. The spontaneity of these schemes is desirable for ad-hoc groups such as mobile ad-hoc networks. In this paper, we present an identity based (ID-based) threshold ring signature scheme. The scheme is provably secure in the random oracle model and provides trusted authority compatibility. To the best of authors’ knowledge, our scheme is the first ID-based threshold ring signature scheme which is also the most efficient (in terms of number of pairing operations required) ID-based ring signature scheme (when t = 1) and threshold ring signature scheme from pairings.

[1]  Germán Sáez,et al.  Distributed Ring Signatures for Identity-Based Scenarios , 2004, IACR Cryptology ePrint Archive.

[2]  Joseph K. Liu,et al.  Blind Spontaneous Anonymous Group Signatures for Ad Hoc Groups , 2004, ESAS.

[3]  Paulo S. L. M. Barreto,et al.  Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.

[4]  Jerome A. Solinas,et al.  ID-based Digital Signature Algorithms , 2003 .

[5]  David Chaum,et al.  Group Signatures , 1991, EUROCRYPT.

[6]  Reihaneh Safavi-Naini,et al.  An Efficient Signature Scheme from Bilinear Pairings and Its Applications , 2004, Public Key Cryptography.

[7]  Yael Tauman Kalai,et al.  How to Leak a Secret: Theory and Applications of Ring Signatures , 2001, Essays in Memory of Shimon Even.

[8]  Germán Sáez,et al.  New Identity-Based Ring Signature Schemes , 2004, ICICS.

[9]  Joseph K. Liu,et al.  Separable Linkable Threshold Ring Signatures , 2004, INDOCRYPT.

[10]  Sherman S. M. Chow Verifiable Pairing and Its Applications , 2004, WISA.

[11]  Amit K. Awasthi,et al.  ID-based Ring Signature and Proxy Ring Signature Schemes from Bilinear Pairings , 2005, Int. J. Netw. Secur..

[12]  Siu-Ming Yiu,et al.  Efficient Forward and Provably Secure ID-Based Signcryption Scheme with Public Verifiability and Public Ciphertext Authenticity , 2003, ICISC.

[13]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[14]  Claus-Peter Schnorr,et al.  Efficient signature generation by smart cards , 2004, Journal of Cryptology.

[15]  Siu-Ming Yiu,et al.  An e-Lottery Scheme Using Verifiable Random Function , 2005, ICCSA.

[16]  Joseph K. Liu,et al.  A Separable Threshold Ring Signature Scheme , 2003, ICISC.

[17]  Reihaneh Safavi-Naini,et al.  New Proxy Signature, Proxy Blind Signature and Proxy Ring Signature Schemes from Bilinear Pairing , 2003, IACR Cryptol. ePrint Arch..

[18]  Kwangjo Kim,et al.  Efficient ID-Based Blind Signature and Proxy Signature from Bilinear Pairings , 2003, ACISP.

[19]  Sherman S. M. Chow,et al.  Impact of Recent Advances in Crytography on Online Game , 2004, ADCOG.

[20]  Tzong-Chen Wu,et al.  An identity-based ring signature scheme from bilinear pairings , 2004, 18th International Conference on Advanced Information Networking and Applications, 2004. AINA 2004..

[21]  Aggelos Kiayias,et al.  Anonymous Identification in Ad Hoc Groups , 2004, EUROCRYPT.

[22]  A. Shamm Identity-based cryptosystems and signature schemes , 1985 .

[23]  Masayuki Abe,et al.  1-out-of-n Signatures from a Variety of Keys , 2002, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[24]  YoungJu Choie,et al.  Implementation of Tate Pairing on Hyperelliptic Curves of Genus 2 , 2003, ICISC.

[25]  Hovav Shacham,et al.  Aggregate and Verifiably Encrypted Signatures from Bilinear Maps , 2003, EUROCRYPT.

[26]  Kwangjo Kim,et al.  ID-Based Blind Signature and Ring Signature from Pairings , 2002, ASIACRYPT.

[27]  Siu-Ming Yiu,et al.  Secure Hierarchical Identity Based Signature and Its Application , 2004, ICICS.

[28]  Lei Li,et al.  A Ring Signature Scheme Based on the Nyberg-Rueppel Signature Scheme , 2003, ACNS.

[29]  Joseph K. Liu,et al.  On the Security Models of (Threshold) Ring Signature Schemes , 2004, ICISC.

[30]  Ivan Damgård,et al.  Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols , 1994, CRYPTO.

[31]  Victor K.-W. Wei A Bilinear Spontaneous Anonymous Threshold Signature for Ad Hoc Groups , 2004, IACR Cryptol. ePrint Arch..

[32]  Adi Shamir,et al.  Identity-Based Cryptosystems and Signature Schemes , 1984, CRYPTO.

[33]  Joseph K. Liu,et al.  On the RS-Code Construction of Ring Signature Schemes and a Threshold Setting of RST , 2003, ICICS.

[34]  Tsz Hon Yuen,et al.  Fast and Proven Secure Blind Identity-Based Signcryption from Pairings , 2005, CT-RSA.

[35]  Mihir Bellare,et al.  Random oracles are practical: a paradigm for designing efficient protocols , 1993, CCS '93.

[36]  Germán Sáez,et al.  New Distributed Ring Signatures for General Families of Signing Subsets , 2004, IACR Cryptol. ePrint Arch..

[37]  Steven D. Galbraith,et al.  Implementing the Tate Pairing , 2002, ANTS.

[38]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[39]  Jacques Stern,et al.  Threshold Ring Signatures and Applications to Ad-hoc Groups , 2002, CRYPTO.

[40]  Dengguo Feng,et al.  A Ring Signature Scheme Using Bilinear Pairings , 2004, WISA.