Nonparametric Kernel Estimation for Semiparametric Models

This paper presents a number of consistency results for nonparametric kernel estimators of density and regression functions and their derivatives. These results are particularly useful in semiparametric estimation and testing problems that rely on preliminary nonparametric estimators, as in Andrews (1994, Econometrica 62, 43–72). The results allow for near-epoch dependent, nonidentically distributed random variables, data-dependent bandwidth sequences, preliminary estimation of parameters (e.g., nonparametric regression based on residuals), and nonparametric regression on index functions.

[1]  Donald W. K. Andrews,et al.  A nearly independent, but non-strong mixing, triangular array , 1985, Journal of Applied Probability.

[2]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[3]  D. McLeish Invariance principles for dependent variables , 1975 .

[4]  Herman J. Bierens,et al.  Uniform Consistency of Kernel Estimators of a Regression Function under Generalized Conditions , 1983 .

[5]  P. Robinson Asymptotically efficient estimation in the presence of heteroskedasticity of unknown form , 1987 .

[6]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[7]  Donald W. K. Andrews,et al.  Empirical Process Methods in Econometrics , 1993 .

[8]  H. White,et al.  A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models , 1988 .

[9]  D. Andrews,et al.  Asymptotic optimality of generalized CL, cross-validation, and generalized cross-validation in regression with heteroskedastic errors , 1991 .

[10]  Donald W. K. Andrews NON-STRONG MIXING AUTOREGRESSIVE PROCESSES , 1984 .

[11]  H. Bierens Model-free Asymptotically Best Forecasting of Stationary Economic Time Series , 1990, Econometric Theory.

[12]  J. Powell,et al.  Nonparametric and Semiparametric Methods in Econometrics and Statistics , 1993 .

[13]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[14]  Donald W. K. Andrews,et al.  An empirical process central limit theorem for dependent non-identically distributed random variables , 1989 .

[15]  Ker-Chau Li,et al.  Asymptotic Optimality for $C_p, C_L$, Cross-Validation and Generalized Cross-Validation: Discrete Index Set , 1987 .

[16]  Wolfgang Härdle,et al.  Nonparametric Curve Estimation from Time Series , 1989 .

[17]  D. McLeish On the Invariance Principle for Nonstationary Mixingales , 1977 .

[18]  P. Robinson ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .

[19]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[20]  I. Ibragimov,et al.  Some Limit Theorems for Stationary Processes , 1962 .

[21]  Donald W. K. Andrews,et al.  Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity , 1994 .

[22]  H. Bierens Advances in Econometrics: Kernel estimators of regression functions , 1987 .

[23]  D. McLeish A Maximal Inequality and Dependent Strong Laws , 1975 .

[24]  Truman F. Bewley Advances in econometrics, Fifth World Congress , 1987 .

[25]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[26]  A. Gallant,et al.  Nonlinear Statistical Models , 1988 .

[27]  R. Spady,et al.  AN EFFICIENT SEMIPARAMETRIC ESTIMATOR FOR BINARY RESPONSE MODELS , 1993 .

[28]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[29]  E. F. Schuster Estimation of a Probability Density Function and Its Derivatives , 1969 .

[30]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[31]  W. Härdle,et al.  How Far are Automatically Chosen Regression Smoothing Parameters from their Optimum , 1988 .

[32]  Yoon-Jae Whang,et al.  Tests of specification for parametric and semiparametric models , 1993 .

[33]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[34]  E. Nadaraya On Estimating Regression , 1964 .