Nonparametric Kernel Estimation for Semiparametric Models
暂无分享,去创建一个
[1] Donald W. K. Andrews,et al. A nearly independent, but non-strong mixing, triangular array , 1985, Journal of Applied Probability.
[2] C. J. Stone,et al. Optimal Rates of Convergence for Nonparametric Estimators , 1980 .
[3] D. McLeish. Invariance principles for dependent variables , 1975 .
[4] Herman J. Bierens,et al. Uniform Consistency of Kernel Estimators of a Regression Function under Generalized Conditions , 1983 .
[5] P. Robinson. Asymptotically efficient estimation in the presence of heteroskedasticity of unknown form , 1987 .
[6] H. Kunzi,et al. Lectu re Notes in Economics and Mathematical Systems , 1975 .
[7] Donald W. K. Andrews,et al. Empirical Process Methods in Econometrics , 1993 .
[8] H. White,et al. A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models , 1988 .
[9] D. Andrews,et al. Asymptotic optimality of generalized CL, cross-validation, and generalized cross-validation in regression with heteroskedastic errors , 1991 .
[10] Donald W. K. Andrews. NON-STRONG MIXING AUTOREGRESSIVE PROCESSES , 1984 .
[11] H. Bierens. Model-free Asymptotically Best Forecasting of Stationary Economic Time Series , 1990, Econometric Theory.
[12] J. Powell,et al. Nonparametric and Semiparametric Methods in Econometrics and Statistics , 1993 .
[13] P. Hall,et al. Martingale Limit Theory and Its Application , 1980 .
[14] Donald W. K. Andrews,et al. An empirical process central limit theorem for dependent non-identically distributed random variables , 1989 .
[15] Ker-Chau Li,et al. Asymptotic Optimality for $C_p, C_L$, Cross-Validation and Generalized Cross-Validation: Discrete Index Set , 1987 .
[16] Wolfgang Härdle,et al. Nonparametric Curve Estimation from Time Series , 1989 .
[17] D. McLeish. On the Invariance Principle for Nonstationary Mixingales , 1977 .
[18] P. Robinson. ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .
[19] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[20] I. Ibragimov,et al. Some Limit Theorems for Stationary Processes , 1962 .
[21] Donald W. K. Andrews,et al. Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity , 1994 .
[22] H. Bierens. Advances in Econometrics: Kernel estimators of regression functions , 1987 .
[23] D. McLeish. A Maximal Inequality and Dependent Strong Laws , 1975 .
[24] Truman F. Bewley. Advances in econometrics, Fifth World Congress , 1987 .
[25] P. Billingsley,et al. Convergence of Probability Measures , 1969 .
[26] A. Gallant,et al. Nonlinear Statistical Models , 1988 .
[27] R. Spady,et al. AN EFFICIENT SEMIPARAMETRIC ESTIMATOR FOR BINARY RESPONSE MODELS , 1993 .
[28] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[29] E. F. Schuster. Estimation of a Probability Density Function and Its Derivatives , 1969 .
[30] C. J. Stone,et al. Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .
[31] W. Härdle,et al. How Far are Automatically Chosen Regression Smoothing Parameters from their Optimum , 1988 .
[32] Yoon-Jae Whang,et al. Tests of specification for parametric and semiparametric models , 1993 .
[33] G. S. Watson,et al. Smooth regression analysis , 1964 .
[34] E. Nadaraya. On Estimating Regression , 1964 .