Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits

Synaptic circuits bind together functional modules of the neocortex. We aim to clarify in a rodent model how intra- and transcolumnar microcircuits in the barrel cortex are laid out to segregate and also integrate sensory information. The primary somatosensory (barrel) cortex of rodents is the ideal model system to study these issues because there, the tactile information derived from the large facial whiskers on the snout is mapped onto so called barrel-related columns which altogether form an isomorphic map of the sensory periphery. This allows to functionally interpret the synaptic microcircuits we have been analyzing in barrel-related columns by means of whole-cell recordings, biocytin filling and mapping of intracortical functional connectivity with sublaminar specificity by computer-controlled flash-release of glutamate. We find that excitatory spiny neurons (spiny stellate, star pyramidal, and pyramidal cells) show a layer-specific connectivity pattern on top of which further cell type-specific circuits can be distinguished. The main features are: (a) strong intralaminar, intracolumnar connections are established by all types of excitatory neurons with both, excitatory and (except for layer Vb- intrinsically burst-spiking-pyramidal cells) inhibitory cells; (b) effective translaminar, intracolumnar connections become more abundant along the three main layer compartments of the canonical microcircuit, and (c) extensive transcolumnar connectivity is preferentially found in specific cell types in each of the layer compartments of a barrel-related column. These multiple sequential and parallel circuits are likely to be suitable for specific cortical processing of “what” “where” and “when” aspects of tactile information acquired by the whiskers on the snout.

[1]  D. Sholl The organization of the cerebral cortex , 1957 .

[2]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[3]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[4]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.

[5]  C. Welker Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. , 1971, Brain research.

[6]  T. Woolsey,et al.  Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse , 1974, The Journal of comparative neurology.

[7]  E. G. Jones,et al.  Varieties and distribution of non‐pyramidal cells in the somatic sensory cortex of the squirrel monkey , 1975, The Journal of comparative neurology.

[8]  Kurochkina Ai,et al.  Classification of cortical neurons according to the character of their background impulse activity , 1975 .

[9]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[10]  E. White,et al.  Thalamocortical synapses involving identified neurons in mouse primary somatosensory cortex: A terminal degeneration and golgi/EM study , 1981, The Journal of comparative neurology.

[11]  E. P. Gardner The organization of the cerebral cortex Eds F. O. Schmitt, F. G. Worden, G. Adelman and S. G. Dennis. MIT Press, Cambridge, MA: 1981. 592 pp. $50.00, £31.00 , 1982, Neuroscience.

[12]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[13]  D. Simons,et al.  Morphology of Golgi‐Cox‐impregnated barrel neurons in rat SmI cortex , 1984, The Journal of comparative neurology.

[14]  G. Paxinos The Rat nervous system , 1985 .

[15]  M. Ito Processing of vibrissa sensory information within the rat neocortex. , 1985, Journal of neurophysiology.

[16]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[17]  R. Masterton,et al.  The sensory contribution of a single vibrissa's cortical barrel. , 1986, Journal of neurophysiology.

[18]  KF Jensen,et al.  Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  D. Whitteridge,et al.  Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17) , 1987, The Journal of comparative neurology.

[20]  M. Armstrong‐James,et al.  Spatiotemporal convergence and divergence in the rat S1 “Barrel” cortex , 1987, The Journal of comparative neurology.

[21]  B W Connors,et al.  Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. , 1989, Journal of neurophysiology.

[22]  D. Simons,et al.  Thalamocortical response transformation in the rat vibrissa/barrel system. , 1989, Journal of neurophysiology.

[23]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  D. Prince,et al.  Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features , 1990, The Journal of comparative neurology.

[25]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  B. Connors,et al.  Thalamocortical responses of mouse somatosensory (barrel) cortexin vitro , 1991, Neuroscience.

[27]  M. Armstrong‐James,et al.  Flow of excitation within rat barrel cortex on striking a single vibrissa. , 1992, Journal of neurophysiology.

[28]  H. Ishizaki,et al.  Brain secretory peptides of the silkmoth Bombyx mori: prothoracicotropic hormone and bombyxin. , 1992, Progress in brain research.

[29]  E. Callaway,et al.  Photostimulation using caged glutamate reveals functional circuitry in living brain slices. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[30]  C. Beaulieu,et al.  Numerical data on neocortical neurons in adult rat, with special reference to the GABA population , 1993, Brain Research.

[31]  R. Lin,et al.  Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. , 1993, Somatosensory & motor research.

[32]  J. Deuchars,et al.  Temporal and spatial properties of local circuits in neocortex , 1994, Trends in Neurosciences.

[33]  Hans-Ulrich Dodt,et al.  Infrared videomicroscopy: a new look at neuronal structure and function , 1994, Trends in Neurosciences.

[34]  D. Simons Neuronal Integration in the Somatosensory Whisker/Barrel Cortex , 1995 .

[35]  E. Jones,et al.  The Barrel Cortex of Rodents , 1995, Cerebral Cortex.

[36]  M. Armstrong‐James The Nature and Plasticity of Sensory Processing within Adult Rat Barrel Cortex , 1995 .

[37]  S. Juliano,et al.  The Role of Acetylcholine in Barrel Cortex , 1995 .

[38]  K. Zilles,et al.  Distribution of GABAergic Elements Postsynaptic to Ventroposteromedial Thalamic Projections in Layer IV of Rat Barrel Cortex , 1996, The European journal of neuroscience.

[39]  P. Goldman-Rakic Regional and cellular fractionation of working memory. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[40]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[41]  M. Nicolelis,et al.  Reconstructing the Engram: Simultaneous, Multisite, Many Single Neuron Recordings , 1997, Neuron.

[42]  A. Keller,et al.  Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex , 1997, Experimental Brain Research.

[43]  Jon H Kaas,et al.  Topographic Maps are Fundamental to Sensory Processing , 1997, Brain Research Bulletin.

[44]  G. Edelman,et al.  Complexity and coherency: integrating information in the brain , 1998, Trends in Cognitive Sciences.

[45]  R. Miles,et al.  How Many Subtypes of Inhibitory Cells in the Hippocampus? , 1998, Neuron.

[46]  S. Nelson,et al.  Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. , 1998, Journal of neurophysiology.

[47]  C. Gilbert Adult cortical dynamics. , 1998, Physiological reviews.

[48]  R Kötter,et al.  Analysing functional connectivity in brain slices by a combination of infrared video microscopy, flash photolysis of caged compounds and scanning methods , 1998, Neuroscience.

[49]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[50]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[51]  R. Kötter,et al.  Connectivity in the somatosensory cortex of the adolescent rat: an in vitro biocytin study , 1999, Anatomy and Embryology.

[52]  M A Nicolelis,et al.  Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. , 1999, Cerebral cortex.

[53]  M E Diamond,et al.  Learning through maps: functional significance of topographic organization in primary sensory cortex. , 1999, Journal of neurobiology.

[54]  D J Simons,et al.  Functional independence of layer IV barrels in rodent somatosensory cortex. , 1999, Journal of neurophysiology.

[55]  R. Kötter,et al.  Laminar characteristics of functional connectivity in rat barrel cortex revealed by stimulation with caged-glutamate , 2000, Neuroscience Research.

[56]  A. Keller,et al.  Thalamic-Evoked Synaptic Interactions in Barrel Cortex Revealed by Optical Imaging , 2000, The Journal of Neuroscience.

[57]  P H Smith,et al.  Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA(A) blockade. , 2000, Journal of neurophysiology.

[58]  A. Schleicher,et al.  Exploration of a novel environment leads to the expression of inducible transcription factors in barrel-related columns , 2000, Neuroscience.

[59]  B. Sakmann,et al.  The Excitatory Neuronal Network of Rat Layer 4 Barrel Cortex , 2000, The Journal of Neuroscience.

[60]  Bernhard Hellwig,et al.  A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex , 2000, Biological Cybernetics.

[61]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[62]  Philip H Smith,et al.  Anatomy, Physiology, and Synaptic Responses of Rat Layer V Auditory Cortical Cells and Effects of Intracellular GABAABlockade , 2000 .

[63]  B Sakmann,et al.  Functionally Independent Columns of Rat Somatosensory Barrel Cortex Revealed with Voltage-Sensitive Dye Imaging , 2001, The Journal of Neuroscience.

[64]  R. Kötter,et al.  Layer-Specific Intracolumnar and Transcolumnar Functional Connectivity of Layer V Pyramidal Cells in Rat Barrel Cortex , 2001, The Journal of Neuroscience.

[65]  K. Fox,et al.  Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex , 2002, Neuroscience.

[66]  Asaf Keller,et al.  Functional independence of layer IV barrels. , 2002, Journal of neurophysiology.

[67]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[68]  R. Kötter,et al.  Cell Type-Specific Circuits of Cortical Layer IV Spiny Neurons , 2003, The Journal of Neuroscience.

[69]  A. Grinvald,et al.  Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Kevin Fox,et al.  The Origin of Cortical Surround Receptive Fields Studied in the Barrel Cortex , 2003, The Journal of Neuroscience.

[71]  C. Petersen The barrel cortex—integrating molecular, cellular and systems physiology , 2003, Pflügers Archiv.

[72]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[73]  A. Grinvald,et al.  Spatiotemporal Dynamics of Sensory Responses in Layer 2/3 of Rat Barrel Cortex Measured In Vivo by Voltage-Sensitive Dye Imaging Combined with Whole-Cell Voltage Recordings and Neuron Reconstructions , 2003, The Journal of Neuroscience.

[74]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[75]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[76]  P. Waite,et al.  CHAPTER 26 – Trigeminal Sensory System , 2004 .

[77]  Bert Sakmann,et al.  Sub‐ and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex , 2004, The Journal of physiology.

[78]  Karl Zilles,et al.  Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. , 2004, Cerebral cortex.

[79]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[80]  T. Kosaka,et al.  Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons , 2004, Experimental Brain Research.

[81]  G. Shepherd,et al.  Laminar and Columnar Organization of Ascending Excitatory Projections to Layer 2/3 Pyramidal Neurons in Rat Barrel Cortex , 2005, The Journal of Neuroscience.

[82]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[83]  Bert Sakmann,et al.  Monosynaptic Connections between Pairs of Spiny Stellate Cells in Layer 4 and Pyramidal Cells in Layer 5A Indicate That Lemniscal and Paralemniscal Afferent Pathways Converge in the Infragranular Somatosensory Cortex , 2005, The Journal of Neuroscience.

[84]  Henry Markram,et al.  Synaptic pathways in neural microcircuits , 2005, Trends in Neurosciences.

[85]  Rolf Kötter,et al.  Optical release of caged glutamate for stimulation of neurons in the in vitro slice preparation. , 2005, Journal of biomedical optics.

[86]  J. Lübke,et al.  Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats , 2006, The Journal of physiology.

[87]  Edward M Callaway,et al.  Development of layer‐specific axonal arborizations in mouse primary somatosensory cortex , 2006, The Journal of comparative neurology.

[88]  David Kleinfeld,et al.  Active sensation: insights from the rodent vibrissa sensorimotor system , 2006, Current Opinion in Neurobiology.

[89]  K. Svoboda,et al.  Interdigitated Paralemniscal and Lemniscal Pathways in the Mouse Barrel Cortex , 2006, PLoS biology.

[90]  R Kötter,et al.  Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. , 2006, Cerebral cortex.

[91]  J. Staiger Immediate-early gene expression in the barrel cortex , 2006, Somatosensory & motor research.

[92]  Patch pipettes are more useful than initially thought: simultaneous pre- and postsynaptic recording from mammalian CNS synapses in vitro and in vivo , 2006, Pflügers Archiv.

[93]  Z. Molnár,et al.  Towards the classification of subpopulations of layer V pyramidal projection neurons , 2006, Neuroscience Research.

[94]  E. Ahissar,et al.  Layer-Specific Touch-Dependent Facilitation and Depression in the Somatosensory Cortex during Active Whisking , 2006, The Journal of Neuroscience.

[95]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[96]  Observing without disturbing: how different cortical neuron classes represent tactile stimuli , 2007, The Journal of physiology.

[97]  N. Wittenburg,et al.  Transformation from temporal to rate coding in a somatosensory thalamocortical pathway , 2022 .