Cortico-hippocampal systems involved in memory and cognition: the PMAT framework.

In this chapter, we review evidence that the cortical pathways to the hippocampus appear to extend from two large-scale cortical systems: a posterior medial (PM) system that includes the parahippocampal cortex and retrosplenial cortex, and an anterior temporal (AT) system that includes the perirhinal cortex. This "PMAT" framework accounts for differences in the anatomical and functional connectivity of the medial temporal lobes, which may underpin differences in cognitive function between the systems. The PM and AT systems make distinct contributions to memory and to other cognitive domains, and convergent findings suggest that they are involved in processing information about contexts and items, respectively. In order to support the full complement of memory-guided behavior, the two systems must interact, and the hippocampal and ventromedial prefrontal cortex may serve as sites of integration between the two systems. We conclude that when considering the "connected hippocampus," inquiry should extend beyond the medial temporal lobes to include the large-scale cortical systems of which they are a part.

[1]  J. Price,et al.  The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. , 2000, Cerebral cortex.

[2]  Margaret L. Schlichting,et al.  Memory integration: neural mechanisms and implications for behavior , 2015, Current Opinion in Behavioral Sciences.

[3]  Lila Davachi,et al.  Selective and Shared Contributions of the Hippocampus and Perirhinal Cortex to Episodic Item and Associative Encoding , 2008, Journal of Cognitive Neuroscience.

[4]  Arne D. Ekstrom,et al.  Differential Connectivity of Perirhinal and Parahippocampal Cortices within Human Hippocampal Subregions Revealed by High-Resolution Functional Imaging , 2012, The Journal of Neuroscience.

[5]  B. Miller,et al.  Neurodegenerative Diseases Target Large-Scale Human Brain Networks , 2009, Neuron.

[6]  H. Eichenbaum,et al.  The medial temporal lobe and recognition memory. , 2007, Annual review of neuroscience.

[7]  Andrew P. Yonelinas,et al.  Perirhinal Cortex Supports Encoding and Familiarity-Based Recognition of Novel Associations , 2008, Neuron.

[8]  J. Pruessner,et al.  Impaired familiarity with preserved recollection after anterior temporal-lobe resection that spares the hippocampus , 2007, Proceedings of the National Academy of Sciences.

[9]  Russell A. Epstein,et al.  Anchoring the neural compass: Coding of local spatial reference frames in human medial parietal lobe , 2014, Nature Neuroscience.

[10]  Timothy E. J. Behrens,et al.  Review Frontal Cortex and Reward-guided Learning and Decision-making Figure 1. Frontal Brain Regions in the Macaque Involved in Reward-guided Learning and Decision-making Finer Grained Anatomical Divisions with Frontal Cortical Systems for Reward-guided Behavior , 2022 .

[11]  Alcino J. Silva,et al.  The Involvement of the Anterior Cingulate Cortex in Remote Contextual Fear Memory , 2004, Science.

[12]  M. Rushworth,et al.  Distinct Roles of Three Frontal Cortical Areas in Reward-Guided Behavior , 2011, The Journal of Neuroscience.

[13]  Kaia L. Vilberg,et al.  Memory retrieval and the parietal cortex: A review of evidence from a dual-process perspective , 2008, Neuropsychologia.

[14]  E Valenstein,et al.  Retrosplenial amnesia. , 1987, Brain : a journal of neurology.

[15]  J. Bachevalier,et al.  Memory for spatial location and object‐place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex , 2008, Hippocampus.

[16]  Matthias J. Gruber,et al.  Hippocampal Activity Patterns Carry Information about Objects in Temporal Context , 2014, Neuron.

[17]  Jocelyne Bachevalier,et al.  Comparison of the Effects of Damage to the Perirhinal and Parahippocampal Cortex on Transverse Patterning and Location Memory in Rhesus Macaques , 2005, The Journal of Neuroscience.

[18]  Lisa M Saksida,et al.  The Perceptual-Mnemonic/Feature Conjunction Model of Perirhinal Cortex Function , 2005, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[19]  J R Hodges,et al.  Semantic dementia: relevance to connectionist models of long-term memory. , 2001, Brain : a journal of neurology.

[20]  Howard Eichenbaum,et al.  Amygdala lesions selectively impair familiarity in recognition memory , 2011, Nature Neuroscience.

[21]  R. Cabeza,et al.  Functional neuroimaging of autobiographical memory , 2007, Trends in Cognitive Sciences.

[22]  John J. B. Allen,et al.  Memory Deficits Characterized by Patterns of Lesions to the Hippocampus and Parahippocampal Cortex , 2000, Annals of the New York Academy of Sciences.

[23]  E. Murray,et al.  Opposite relationship of hippocampal and rhinal cortex damage to delayed nonmatching‐to‐sample deficits in monkeys † , 2001, Hippocampus.

[24]  Justin L. Vincent,et al.  Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. , 2008, Journal of neurophysiology.

[25]  Yuji Naya,et al.  The perirhinal cortex. , 2014, Annual review of neuroscience.

[26]  S. Carmichael,et al.  Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys , 1996 .

[27]  L. Swanson,et al.  A direct projection from Ammon's horn to prefrontal cortex in the rat , 1981, Brain Research.

[28]  E. Lein,et al.  Functional organization of the hippocampal longitudinal axis , 2014, Nature Reviews Neuroscience.

[29]  Paul A. Yushkevich,et al.  Anterior and posterior MTL networks in aging and MCI , 2015, Neurobiology of Aging.

[30]  Roberto Cabeza,et al.  Parietal Lobe and Episodic Memory: Bilateral Damage Causes Impaired Free Recall of Autobiographical Memory , 2007, The Journal of Neuroscience.

[31]  R. Knight,et al.  The Medial Temporal Lobe Supports Conceptual Implicit Memory , 2010, Neuron.

[32]  Daniela Montaldi,et al.  The role of recollection and familiarity in the functional differentiation of the medial temporal lobes , 2010, Hippocampus.

[33]  Sean M. Polyn,et al.  Functional interactions between large-scale networks during memory search. , 2015, Cerebral cortex.

[34]  L. Tyler,et al.  Object-Specific Semantic Coding in Human Perirhinal Cortex , 2014, The Journal of Neuroscience.

[35]  Alex Martin,et al.  Aversive learning modulates cortical representations of object categories. , 2014, Cerebral cortex.

[36]  A. Zalesky,et al.  Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection , 2012, Proceedings of the National Academy of Sciences.

[37]  Andrew R. Mayes,et al.  Location of Lesions in Korsakoff's Syndrome: Neuropsychological and Neuropathological Data on Two Patients , 1988, Cortex.

[38]  D. R. Euston,et al.  The Role of Medial Prefrontal Cortex in Memory and Decision Making , 2012, Neuron.

[39]  C. Ranganath,et al.  Two cortical systems for memory-guided behaviour , 2012, Nature Reviews Neuroscience.

[40]  M. Eacott,et al.  Dissociable effects of lesions to the perirhinal cortex and the postrhinal cortex on memory for context and objects in rats. , 2005, Behavioral neuroscience.

[41]  K. Saleem,et al.  Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys , 2005, The Journal of comparative neurology.

[42]  J. Price Definition of the Orbital Cortex in Relation to Specific Connections with Limbic and Visceral Structures and Other Cortical Regions , 2007, Annals of the New York Academy of Sciences.

[43]  L. Davachi Item, context and relational episodic encoding in humans , 2006, Current Opinion in Neurobiology.

[44]  J. Aggleton,et al.  eview hy do lesions in the rodent anterior thalamic nuclei cause such evere spatial deficits ? , 2015 .

[45]  John P Aggleton,et al.  Lesions of the Rat Perirhinal Cortex Spare the Acquisition of a Complex Configural Visual Discrimination Yet Impair Object Recognition , 2010, Behavioral neuroscience.

[46]  B. Levine,et al.  The functional neuroanatomy of autobiographical memory: A meta-analysis , 2006, Neuropsychologia.

[47]  J. Aggleton Multiple anatomical systems embedded within the primate medial temporal lobe: Implications for hippocampal function , 2012, Neuroscience & Biobehavioral Reviews.

[48]  Andy C. H. Lee,et al.  Behavioral / Systems / Cognitive Functional Specialization in the Human Medial Temporal Lobe , 2005 .

[49]  Charan Ranganath,et al.  Medial Temporal Lobe Coding of Item and Spatial Information during Relational Binding in Working Memory , 2014, The Journal of Neuroscience.

[50]  R. Nathan Spreng,et al.  The Common Neural Basis of Autobiographical Memory, Prospection, Navigation, Theory of Mind, and the Default Mode: A Quantitative Meta-analysis , 2009, Journal of Cognitive Neuroscience.

[51]  Rebecca Saxe,et al.  Contributions of episodic retrieval and mentalizing to autobiographical thought: Evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses , 2014, NeuroImage.

[52]  A. Yonelinas,et al.  The slow forgetting of emotional episodic memories: an emotional binding account , 2015, Trends in Cognitive Sciences.

[53]  R. J. Meijer,et al.  Collateral projections from the rat hippocampal formation to the lateral and medial prefrontal cortex , 1997, Hippocampus.

[54]  Marian E. Berryhill,et al.  Enhanced long-term memory encoding after parietal neurostimulation , 2014, Experimental Brain Research.

[55]  M. D’Esposito,et al.  Topographical disorientation: a synthesis and taxonomy. , 1999, Brain : a journal of neurology.

[56]  K. Schleifer,et al.  Targeted enhancement of cortical-hippocampal brain networks and associative memory , 2014 .

[57]  F. H. Lopes da Silva,et al.  Evidence for a direct projection from the postrhinal cortex to the subiculum in the rat , 2001, Hippocampus.

[58]  Melina R. Uncapher,et al.  Episodic Encoding Is More than the Sum of Its Parts: An fMRI Investigation of Multifeatural Contextual Encoding , 2006, Neuron.

[59]  A. Mikami,et al.  Activity of single neurons in the monkey amygdala during performance of a visual discrimination task. , 1992, Journal of neurophysiology.

[60]  E. Rolls,et al.  The effects of stimulus novelty and familiarity on neuronal activity in the amygdala of monkeys performing recognition memory tasks , 2004, Experimental Brain Research.

[61]  Alex Martin,et al.  Semantic memory and the brain: structure and processes , 2001, Current Opinion in Neurobiology.

[62]  C. Ranganath,et al.  Functional subregions of the human entorhinal cortex , 2015, eLife.

[63]  M. Eacott,et al.  The Roles of Perirhinal Cortex, Postrhinal Cortex, and the Fornix in Memory for Objects, Contexts, and Events in the Rat , 2005, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[64]  H. Barbas,et al.  Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey , 2002, Neuroscience.

[65]  C. Ranganath A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory , 2010, Hippocampus.

[66]  Jeffrey D. Johnson,et al.  Recollection and the reinstatement of encoding-related cortical activity. , 2007, Cerebral cortex.

[67]  Philip A. Kragel,et al.  Dynamic neural networks supporting memory retrieval , 2011, NeuroImage.

[68]  D. Pandya,et al.  Some observations on the course and composition of the cingulum bundle in the rhesus monkey , 1984, The Journal of comparative neurology.

[69]  E. Maguire The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. , 2001, Scandinavian journal of psychology.

[70]  Arne D. Ekstrom,et al.  Frequency–specific network connectivity increases underlie accurate spatiotemporal memory retrieval , 2013, Nature Neuroscience.

[71]  R. Burwell,et al.  Positional firing properties of postrhinal cortex neurons , 2003, Neuroscience.

[72]  R. Cabeza,et al.  Cognitive neuroscience of emotional memory , 2006, Nature Reviews Neuroscience.

[73]  Jamie G. Bunce,et al.  Prefrontal pathways target excitatory and inhibitory systems in memory-related medial temporal cortices , 2011, NeuroImage.

[74]  Arne D. Ekstrom,et al.  Cellular networks underlying human spatial navigation , 2003, Nature.

[75]  Andy C. H. Lee,et al.  Medial temporal lobe activity during complex discrimination of faces, objects, and scenes: Effects of viewpoint , 2009, Hippocampus.

[76]  R. Henson,et al.  How schema and novelty augment memory formation , 2012, Trends in Neurosciences.

[77]  Marco Bozzali,et al.  TMS evidence for a selective role of the precuneus in source memory retrieval , 2015, Behavioural Brain Research.

[78]  M. Eacott,et al.  Impaired object recognition with increasing levels of feature ambiguity in rats with perirhinal cortex lesions , 2004, Behavioural Brain Research.

[79]  M Mishkin,et al.  Neural substrates of visual stimulus-stimulus association in rhesus monkeys , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  Derek J. Huffman,et al.  Multivariate pattern analysis of the human medial temporal lobe revealed representationally categorical cortex and representationally agnostic hippocampus , 2014, Hippocampus.

[81]  Dorothy Tse,et al.  Schema-Dependent Gene Activation and Memory Encoding in Neocortex , 2011, Science.

[82]  M. Witter,et al.  Anatomical Organization of the Parahippocampal‐Hippocampal Network , 2000, Annals of the New York Academy of Sciences.

[83]  J. Knierim,et al.  Hippocampal place cells: Parallel input streams, subregional processing, and implications for episodic memory , 2006, Hippocampus.

[84]  N. Burgess,et al.  The hippocampus and memory: insights from spatial processing , 2008, Nature Reviews Neuroscience.

[85]  Katsuki Nakamura,et al.  Visual response properties of neurons in the parahippocampal cortex of monkeys. , 2003, Journal of neurophysiology.

[86]  Arne D. Ekstrom,et al.  Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans , 2014, Scientific Reports.

[87]  Pierre Maquet,et al.  Brain activity underlying encoding and retrieval of source memory. , 2002, Cerebral cortex.

[88]  D. Pandya,et al.  Fiber system linking the mid‐dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey , 1999, The Journal of comparative neurology.

[89]  I. Olson,et al.  Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. , 2013, Brain : a journal of neurology.

[90]  Steven W Kennerley,et al.  Encoding of Gustatory Working Memory by Orbitofrontal Neurons , 2009, The Journal of Neuroscience.

[91]  Roberto Cabeza,et al.  A Broader View of Perirhinal Function: From Recognition Memory to Fluency-Based Decisions , 2013, The Journal of Neuroscience.

[92]  Rebecca D. Burwell,et al.  Hippocampal and subicular efferents and afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat , 2013, Behavioural Brain Research.

[93]  H. Barbas,et al.  Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey , 1995, Hippocampus.

[94]  L. Squire,et al.  The medial temporal lobe memory system , 1991, Science.

[95]  M. W. Brown,et al.  Episodic memory, amnesia, and the hippocampal–anterior thalamic axis , 1999, Behavioral and Brain Sciences.

[96]  Billi Randall,et al.  The perirhinal cortex and conceptual processing: Effects of feature-based statistics following damage to the anterior temporal lobes , 2015, Neuropsychologia.

[97]  Andrew P. Yonelinas,et al.  Activity reductions in perirhinal cortex predict conceptual priming and familiarity-based recognition , 2014, Neuropsychologia.

[98]  B. Staresina,et al.  Perirhinal and Parahippocampal Cortices Differentially Contribute to Later Recollection of Object- and Scene-Related Event Details , 2011, The Journal of Neuroscience.

[99]  Christian F. Doeller,et al.  Functional topography of the human entorhinal cortex , 2015, eLife.

[100]  R. Buckner,et al.  Functional-Anatomic Fractionation of the Brain's Default Network , 2010, Neuron.

[101]  K. Miller,et al.  Human Retrosplenial Cortex Displays Transient Theta Phase Locking with Medial Temporal Cortex Prior to Activation during Autobiographical Memory Retrieval , 2013, The Journal of Neuroscience.

[102]  D. Pandya,et al.  Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. , 2007, Brain : a journal of neurology.

[103]  Klaas E. Stephan,et al.  The anatomical basis of functional localization in the cortex , 2002, Nature Reviews Neuroscience.

[104]  A. Mikami,et al.  Visual response properties of single neurons in the temporal pole of behaving monkeys. , 1994, Journal of neurophysiology.

[105]  Russell A. Epstein Parahippocampal and retrosplenial contributions to human spatial navigation , 2008, Trends in Cognitive Sciences.

[106]  N. Kanwisher,et al.  Mental Imagery of Faces and Places Activates Corresponding Stimulus-Specific Brain Regions , 2000, Journal of Cognitive Neuroscience.

[107]  B. Richmond,et al.  Learning motivational significance of visual cues for reward schedules requires rhinal cortex , 2000, Nature Neuroscience.

[108]  Timothy Edward John Behrens,et al.  Separable Learning Systems in the Macaque Brain and the Role of Orbitofrontal Cortex in Contingent Learning , 2010, Neuron.

[109]  J. Bachevalier,et al.  The Hippocampal/Parahippocampal Regions and Recognition Memory: Insights from Visual Paired Comparison versus Object-Delayed Nonmatching in Monkeys , 2004, The Journal of Neuroscience.

[110]  Russell A. Epstein,et al.  Perceptual deficits in amnesia: challenging the medial temporal lobe ‘mnemonic’ view , 2005, Neuropsychologia.

[111]  Aldo Genovesio,et al.  Monkey Orbitofrontal Cortex Encodes Response Choices Near Feedback Time , 2009, The Journal of Neuroscience.

[112]  L. Saksida,et al.  Perirhinal cortex resolves feature ambiguity in complex visual discriminations , 2002, The European journal of neuroscience.

[113]  Zara M. Bergström,et al.  Continuous Theta Burst Stimulation of Angular Gyrus Reduces Subjective Recollection , 2014, PloS one.

[114]  I. L. Nieuwenhuis,et al.  The role of the ventromedial prefrontal cortex in memory consolidation , 2011, Behavioural Brain Research.

[115]  Andrew P. Yonelinas,et al.  Medial Temporal Lobe Activity during Source Retrieval Reflects Information Type, not Memory Strength , 2010, Journal of Cognitive Neuroscience.

[116]  M. Witter,et al.  Topographic organization of orbitofrontal projections to the parahippocampal region in rats , 2014, The Journal of comparative neurology.

[117]  M. Witter,et al.  Perirhinal cortex input to the hippocampus in the rat: evidence for parallel pathways, both direct and indirect. A combined physiological and anatomical study , 1999, The European journal of neuroscience.

[118]  M. Rushworth,et al.  Behavioral / Systems / Cognitive Connectivity-Based Parcellation of Human Cingulate Cortex and Its Relation to Functional Specialization , 2008 .

[119]  L. Tyler,et al.  Binding crossmodal object features in perirhinal cortex. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[120]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[121]  Y. Miyashita Neuronal correlate of visual associative long-term memory in the primate temporal cortex , 1988, Nature.

[122]  J. Aggleton,et al.  Neurotoxic lesions of the perirhinal cortex do not mimic the behavioural effects of fornix transection in the rat , 1996, Behavioural Brain Research.

[123]  Andy C. H. Lee,et al.  Differentiating the Roles of the Hippocampus and Perirhinal Cortex in Processes beyond Long-Term Declarative Memory: A Double Dissociation in Dementia , 2006, The Journal of Neuroscience.

[124]  Ingrid R. Olson,et al.  Dissociation Between Memory Accuracy and Memory Confidence Following Bilateral Parietal Lesions , 2009, Cerebral cortex.

[125]  Andrew P. Yonelinas,et al.  Functional Connectivity Relationships Predict Similarities in Task Activation and Pattern Information during Associative Memory Encoding , 2014, Journal of Cognitive Neuroscience.

[126]  H. Intraub,et al.  Beyond the Edges of a View: Boundary Extension in Human Scene-Selective Visual Cortex , 2007, Neuron.

[127]  Brigitte Landeau,et al.  Intrinsic Connectivity Identifies the Hippocampus as a Main Crossroad between Alzheimer’s and Semantic Dementia-Targeted Networks , 2014, Neuron.

[128]  C. Grady,et al.  Event-related fMRI studies of episodic encoding and retrieval: Meta-analyses using activation likelihood estimation , 2009, Neuropsychologia.

[129]  Hong-wei Dong,et al.  Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? , 2010, Neuron.

[130]  Andy C. H. Lee,et al.  Going beyond LTM in the MTL: A synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception , 2010, Neuropsychologia.

[131]  G. McCarthy,et al.  Language-related field potentials in the anterior-medial temporal lobe: II. Effects of word type and semantic priming , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  R. Vertes,et al.  Projections of the medial orbital and ventral orbital cortex in the rat , 2011, The Journal of comparative neurology.

[133]  Seralynne D Vann,et al.  Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory. , 2002, Behavioral neuroscience.

[134]  E. Kensinger Remembering the Details: Effects of Emotion , 2009, Emotion review : journal of the International Society for Research on Emotion.

[135]  K. Saleem,et al.  Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey , 2008, The Journal of comparative neurology.

[136]  R. Burwell The Parahippocampal Region: Corticocortical Connectivity , 2000, Annals of the New York Academy of Sciences.

[137]  Jeffrey S. Taube,et al.  Origins of landmark encoding in the brain , 2011, Trends in Neurosciences.

[138]  T. H. Brown,et al.  Single-Unit Firing in Rat Perirhinal Cortex Caused by Fear Conditioning to Arbitrary and Ecological Stimuli , 2007, The Journal of Neuroscience.

[139]  Christian Büchel,et al.  Contributions of occipital, parietal and parahippocampal cortex to encoding of object-location associations , 2005, Neuropsychologia.

[140]  Tracy H. Wang,et al.  Recollection-Related Increases in Functional Connectivity Predict Individual Differences in Memory Accuracy , 2015, The Journal of Neuroscience.

[141]  Rachel A. Diana,et al.  Imaging recollection and familiarity in the medial temporal lobe: a three-component model , 2007, Trends in Cognitive Sciences.

[142]  Charan Ranganath,et al.  Cortical and subcortical contributions to sequence retrieval: Schematic coding of temporal context in the neocortical recollection network , 2015, NeuroImage.

[143]  Hallvard Røe Evensmoen,et al.  Long-axis specialization of the human hippocampus , 2013, Trends in Cognitive Sciences.

[144]  Robert S. Ross,et al.  The Hippocampus is Preferentially Associated with Memory for Spatial Context , 2008, Journal of Cognitive Neuroscience.

[145]  M. Corbetta,et al.  Episodic Memory Retrieval, Parietal Cortex, and the Default Mode Network: Functional and Topographic Analyses , 2011, The Journal of Neuroscience.

[146]  B. Richmond,et al.  Response differences in monkey TE and perirhinal cortex: stimulus association related to reward schedules. , 2000, Journal of neurophysiology.