Smoothly Blending Vector Fields for Global Robot Navigation

We introduce a new algorithm for constructing smooth vector fields for global robot navigation. Given a ddimensional cell complex with each cell a convex polygon, our algorithm defines a number of local vector fields: one for each cell, and one for each face connecting two cells together. We smoothly blend these component vector fields together using bump functions; the precomputation of the component vector field and all queries can be done in linear time. The integral curves of the resulting globally-defined vector field are guaranteed to arrive at a neighborhood of the goal state in finite time. Except for a set of measure zero, the vector field is smooth. The resulting vector field can be used directly to control kinematic systems or can be used to develop dynamic control policies. We prove convergence for the integral curves of the vector fields produced by our algorithm and give examples illustrating the practical advantages of our technique.

[1]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[2]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[3]  Kang G. Shin,et al.  Minimum-time control of robotic manipulators with geometric path constraints , 1985 .

[4]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[5]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[6]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[7]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[8]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[9]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[10]  J. Tsitsiklis Efficient algorithms for globally optimal trajectories , 1995, IEEE Trans. Autom. Control..

[11]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[12]  Jean-Paul Laumond,et al.  Flatness and small-time controllability of multibody mobile robots: Application to motion planning , 1997 .

[13]  Mark H. Overmars,et al.  Multilevel Path Planning for Nonholonomic Robots Using Semiholonomic Subsystems , 1998, Int. J. Robotics Res..

[14]  Alfred A. Rizzi Hybrid control as a method for robot motion programming , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[15]  Jean-Paul Laumond,et al.  Guidelines in nonholonomic motion planning for mobile robots , 1998 .

[16]  Daniel E. Koditschek,et al.  Sequential Composition of Dynamically Dexterous Robot Behaviors , 1999, Int. J. Robotics Res..

[17]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[18]  Steven M. LaValle,et al.  Algorithms for Computing Numerical Optimal Feedback Motion Strategies , 2001, Int. J. Robotics Res..

[19]  Richard M. Murray,et al.  Vehicle motion planning using stream functions , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[20]  Howie Choset,et al.  Composition of local potential functions for global robot control and navigation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[21]  Steven M. LaValle,et al.  Planning algorithms , 2006 .