A Spectral Approach to Solve Box-constrained Multi-objective Optimization Problems

This paper presents some first and second order conditions necessary for the Pareto optimality of box-constrained multi-objective optimization problems. These necessary conditions are related to the spectrum of a matrix defined via the gradient vectors and the Hessian matrices of the objective functions. These necessary conditions are used to develop two algorithms. The first one is built taking into account the first order necessary conditions and determines some critical points for the multi-objective problems considered. The second one is based on the second order necessary conditions and discards the critical points that do not belong to the local Pareto optimal front. Some numerical results are shown.

[1]  Margaret M. Wiecek,et al.  Augmented Lagrangian and Tchebycheff Approaches in Multiple Objective Programming , 1999, J. Glob. Optim..

[2]  Maria Cristina Recchioni,et al.  A path following method for box-constrained multiobjective optimization with applications to goal programming problems , 2003, Math. Methods Oper. Res..

[3]  Brahim Aghezzaf,et al.  Generalized Invexity and Duality in Multiobjective Programming Problems , 2000, J. Glob. Optim..

[4]  Gene H. Golub,et al.  Matrix computations , 1983 .

[5]  Maria Cristina Recchioni,et al.  A Stochastic Algorithm for Constrained Global Optimization , 2000, J. Glob. Optim..

[6]  B. Svaiter,et al.  A steepest descent method for vector optimization , 2005 .

[7]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[8]  Kalyanmoy Deb,et al.  Nonlinear goal programming using multi-objective genetic algorithms , 2001, J. Oper. Res. Soc..

[9]  Maria Cristina Recchioni,et al.  Monotone Variable–Metric Algorithm for Linearly Constrained Nonlinear Programming , 2000 .

[10]  G. Giorgi,et al.  The Notion of Invexity in Vector Optimization: Smooth and Nonsmooth Case , 1998 .

[11]  Mark Harman,et al.  Genetic and Evolutionary Computation (GECCO) , 2003 .

[12]  Alfredo N. Iusem,et al.  Proximal Methods in Vector Optimization , 2005, SIAM J. Optim..

[13]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[14]  C. Hillermeier Generalized Homotopy Approach to Multiobjective Optimization , 2001 .

[15]  Thomas Hanne,et al.  Global Multiobjective Optimization Using Evolutionary Algorithms , 2000, J. Heuristics.

[16]  Graziella Pacelli,et al.  An interior point algorithm for global optimal solutions and KKT points , 2001 .

[17]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[18]  M. C. Recchioni,et al.  A Quadratically Convergent Method for Linear Programming , 1991 .

[19]  Kathrin Klamroth,et al.  Introducing oblique norms into multiple criteria programming , 2002, J. Glob. Optim..

[20]  Jörg Fliege,et al.  Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..

[21]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[22]  S. K. Mishra,et al.  Nonconvex Optimization and Its Applications , 2008 .

[23]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[24]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[25]  Enrico Miglierina,et al.  Slow Solutions of a Differential Inclusion and Vector Optimization , 2004 .

[26]  W. Ames Mathematics in Science and Engineering , 1999 .

[27]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .