Scenario-based, closed-loop model predictive control with application to emergency vehicle scheduling

Model predictive control has been a major success story in process control. More recently, the methodology has been used in other contexts, including automotive engine control, power electronics and telecommunications. Most applications focus on set-point tracking and use single-sequence optimisation. Here we consider an alternative class of problems motivated by the scheduling of emergency vehicles. Here disturbances are the dominant feature. We develop a novel closed-loop model predictive control strategy aimed at this class of problems. We motivate, and illustrate, the ideas via the problem of fluid deployment of ambulance resources.

[1]  Basil Kouvaritakis,et al.  Efficient robust predictive control , 2000, IEEE Trans. Autom. Control..

[2]  Alessandro Casavola,et al.  Robust constrained predictive control of uncertain norm-bounded linear systems , 2004, Autom..

[3]  Massimo Canale,et al.  Robust design of predictive controllers in presence of unmodeled dynamics , 2001 .

[4]  Baocang Ding PROPERTIES OF PARAMETER-DEPENDENT OPEN-LOOP MPC FOR UNCERTAIN SYSTEMS WITH POLYTOPIC DESCRIPTION , 2009 .

[5]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[6]  Graham C. Goodwin,et al.  Design of scenarios for constrained stochastic optimization via vector quantization , 2012, 2012 American Control Conference (ACC).

[7]  John Lygeros,et al.  Stochastic Receding Horizon Control With Bounded Control Inputs: A Vector Space Approach , 2009, IEEE Transactions on Automatic Control.

[8]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Suboptimal Control: A Survey from ADP to MPC , 2005, Eur. J. Control.

[9]  Basil Kouvaritakis,et al.  Stochastic tube MPC with state estimation , 2012, Autom..

[10]  Florian Herzog,et al.  Stochastic Model Predictive Control And Portfolio Optimization , 2007 .

[11]  U. Ammann,et al.  Model Predictive Control—A Simple and Powerful Method to Control Power Converters , 2009, IEEE Transactions on Industrial Electronics.

[12]  Ramayya Krishnan,et al.  An Efficient Simulation-Based Approach to Ambulance Fleet Allocation and Dynamic Redeployment , 2012, AAAI.

[13]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[14]  Johan A. K. Suykens,et al.  A SIMPLE ALGORITHM FOR ROBUST MPC , 2005 .

[15]  Wook Hyun Kwon,et al.  Robust one‐step receding horizon control for constrained systems , 1999 .

[16]  James B. Rawlings,et al.  Postface to “ Model Predictive Control : Theory and Design ” , 2012 .

[17]  Johan A. K. Suykens,et al.  Robust triple mode MPC , 2006 .

[18]  Tobias Geyer,et al.  A Comparison of Control and Modulation Schemes for Medium-Voltage Drives: Emerging Predictive Control Concepts Versus PWM-Based Schemes , 2011, IEEE Transactions on Industry Applications.

[19]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[20]  Graham C. Goodwin,et al.  Model Predictive Zooming Power Control in Future Cellular Systems under Coarse Quantization , 2012, 2012 IEEE Vehicular Technology Conference (VTC Fall).

[21]  David Q. Mayne,et al.  Robust model predictive control using tubes , 2004, Autom..

[22]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[23]  Basil Kouvaritakis,et al.  Stochastic tubes in model predictive control with probabilistic constraints , 2010, Proceedings of the 2010 American Control Conference.

[24]  Alberto Bemporad,et al.  Scenario-based model predictive control of stochastic constrained linear systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[25]  Matthew S. Maxwell,et al.  Approximate Dynamic Programming for Ambulance Redeployment , 2010, INFORMS J. Comput..

[26]  Eric C. Kerrigan,et al.  Optimization over state feedback policies for robust control with constraints , 2006, Autom..

[27]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[28]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[29]  Giuseppe Carlo Calafiore,et al.  Robust Model Predictive Control via Scenario Optimization , 2012, IEEE Transactions on Automatic Control.

[30]  Werner Römisch,et al.  Scenario Reduction Algorithms in Stochastic Programming , 2003, Comput. Optim. Appl..

[31]  Verena Schmid,et al.  Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming , 2012, Eur. J. Oper. Res..

[32]  Manfred Morari,et al.  Model Predictive Direct Torque Control—Part I: Concept, Algorithm, and Analysis , 2009, IEEE Transactions on Industrial Electronics.

[33]  D. Mayne,et al.  Min-max feedback model predictive control for constrained linear systems , 1998, IEEE Trans. Autom. Control..

[34]  Luigi Chisci,et al.  Systems with persistent disturbances: predictive control with restricted constraints , 2001, Autom..

[35]  Alberto Bemporad,et al.  A stochastic model predictive control approach to dynamic option hedging with transaction costs , 2011, Proceedings of the 2011 American Control Conference.