Sparse bayesian information filters for localization and mapping

This thesis formulates an estimation framework for Simultaneous Localization and Mapping (SLAM) that addresses the problem of scalability in large environments. We describe an estimation-theoretic algorithm that achieves significant gains in computational efficiency while maintaining consistent estimates for the vehicle pose and the map of the environment. We specifically address the feature-based SLAM problem in which the robot represents the environment as a collection of landmarks. The thesis takes a Bayesian approach whereby we maintain a joint posterior over the vehicle pose and feature states, conditioned upon measurement data. We model the distribution as Gaussian and parametrize the posterior in the canonical form, in terms of the information (inverse covariance) matrix. When sparse, this representation is amenable to computationally efficient Bayesian SLAM filtering. However, while a large majority of the elements within the normalized information matrix are very small in magnitude, it is fully populated nonetheless. Recent feature-based SLAM filters achieve the scalability benefits of a sparse parametrization by explicitly pruning these weak links in an effort to enforce sparsity. We analyze one such algorithm, the Sparse Extended Information Filter (SEIF), which has laid much of the groundwork concerning the computational benefits of the sparse canonical form. The thesis performs a detailed analysis of the process by which the SEIF approximates the sparsity of the information matrix and reveals key insights into the consequences of different sparsification strategies. We demonstrate that the SEIF yields a sparse approximation to the posterior that is inconsistent, suffering from exaggerated confidence estimates. This overconfidence has detrimental effects on important aspects of the SLAM process and affects the higher level goal of producing accurate maps for subsequent localization and path planning. This thesis proposes an alternative scalable filter that maintains sparsity while preserving the consistency of the distribution. We leverage insights into the natural structure of the feature-based canonical parametrization and derive a method that actively maintains an exactly sparse posterior. Our algorithm exploits the structure of the parametrization to achieve gains in efficiency, with a computational cost that scales linearly with the size of the map. Unlike similar techniques that sacrifice consistency for improved scalability, our algorithm performs inference over a posterior that is conservative relative to the nominal Gaussian distribution. Consequently, we preserve the consistency of the pose and map estimates and avoid the effects of an overconfident posterior. We demonstrate our filter alongside the SEIF and the standard EKF both in simulation as well as on two real-world datasets. While we maintain the computational advantages of an exactly sparse representation, the results show convincingly that our method yields conservative estimates for the robot pose and map that are nearly identical to those of the original. Gaussian distribution as produced by the EKF, but at much less computational expense. The thesis concludes with an extension of our SLAM filter to a complex underwater environment. We describe a systems-level framework for localization and mapping relative to a ship hull with an Autonomous Underwater Vehicle (AUV) equipped with a forward-looking sonar. The approach utilizes our filter to fuse measurements of vehicle attitude and motion from onboard sensors with data from sonar images of the hull. We employ the system to perform three-dimensional, 6-DOF SLAM on a ship hull. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

[1]  Nobuyuki Kita,et al.  3D simultaneous localisation and map-building using active vision for a robot moving on undulating terrain , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[2]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[3]  Juan D. Tardós,et al.  Data association in stochastic mapping using the joint compatibility test , 2001, IEEE Trans. Robotics Autom..

[4]  Franz S. Hover,et al.  SLAM for ship hull inspection using exactly sparse extended information filters , 2008, 2008 IEEE International Conference on Robotics and Automation.

[5]  Frank Dellaert,et al.  Fast Incremental Square Root Information Smoothing , 2007, IJCAI.

[6]  Udo Frese,et al.  Simultaneous Localization and Mapping - A Discussion , 2001 .

[7]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[8]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[9]  Stefan B. Williams,et al.  Autonomous underwater simultaneous localisation and map building , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  Edwin Olson,et al.  Single-Cluster Spectral Graph Partitioning for Robotics Applications , 2005, Robotics: Science and Systems.

[11]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[12]  Michael A. Kokko Range-based navigation of AUVs operating near ship hulls , 2007 .

[13]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[14]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[15]  Matthew R. Walter,et al.  Sparse extended information filters: insights into sparsification , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  J. Holmes,et al.  Accuracy and precision of fish-count data from a “dual-frequency identification sonar” (DIDSON) imaging system , 2006 .

[17]  Luke Fletcher,et al.  Simultaneous local and global state estimation for robotic navigation , 2009, 2009 IEEE International Conference on Robotics and Automation.

[18]  Thomas S. Huang,et al.  Motion and Structure from Orthographic Projections , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Philip F. McLauchlan,et al.  A batch/recursive algorithm for 3D scene reconstruction , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[20]  Hanumant Singh,et al.  Exactly Sparse Delayed-State Filters , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[21]  Frouz Naderi,et al.  Mars exploration , 2006, IEEE Robotics & Automation Magazine.

[22]  John J. Leonard,et al.  Adaptive Mobile Robot Navigation and Mapping , 1999, Int. J. Robotics Res..

[23]  Luke Fletcher,et al.  A perception‐driven autonomous urban vehicle , 2008, J. Field Robotics.

[24]  Emilio Frazzoli,et al.  Closed-loop Pallet Engagement in an Unstructured Environment , 2010, ICRA 2010.

[25]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[26]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[27]  Ingemar J. Cox,et al.  Modeling a Dynamic Environment Using a Bayesian Multiple Hypothesis Approach , 1994, Artif. Intell..

[28]  Matthew R. Walter,et al.  Exactly Sparse Extended Information Filters for Feature-based SLAM , 2007, Int. J. Robotics Res..

[29]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[30]  Jeffrey K. Uhlmann,et al.  A counter example to the theory of simultaneous localization and map building , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[31]  Timothy A. Davis,et al.  A column approximate minimum degree ordering algorithm , 2000, TOMS.

[32]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[33]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[34]  D. Mackay,et al.  Bayesian methods for adaptive models , 1992 .

[35]  Mark A. Paskin,et al.  Thin Junction Tree Filters for Simultaneous Localization and Mapping , 2002, IJCAI.

[36]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[37]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[38]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[39]  Kevin P. Murphy,et al.  Bayesian Map Learning in Dynamic Environments , 1999, NIPS.

[40]  Michael Bosse,et al.  Mapping Partially Observable Features from Multiple Uncertain Vantage Points , 2002, Int. J. Robotics Res..

[41]  Katsuhiko Ogata,et al.  Discrete-time control systems , 1987 .

[42]  Long Quan,et al.  Relative 3D Reconstruction Using Multiple Uncalibrated Images , 1995, Int. J. Robotics Res..

[43]  E. O. Belcher,et al.  Object identification with acoustic lenses , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[44]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[45]  Brian Bingham,et al.  Techniques for Deep Sea Near Bottom Survey Using an Autonomous Underwater Vehicle , 2007, Int. J. Robotics Res..

[46]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[47]  H. Robbins A Stochastic Approximation Method , 1951 .

[48]  Emilio Frazzoli,et al.  Closed-loop Pallet Engagement in Unstructured Environments , 2010, IROS 2010.

[49]  R. Volpe Rover technology development and mission infusion beyond MER , 2005, 2005 IEEE Aerospace Conference.

[50]  J. A. Castellanos,et al.  Limits to the consistency of EKF-based SLAM , 2004 .

[51]  Paul Newman,et al.  On the Structure and Solution of the Simultaneous Localisation and Map Building Problem , 1999 .

[52]  Stefan B. Williams,et al.  An efficient approach to the simultaneous localisation and mapping problem , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[53]  Eduardo Mario Nebot,et al.  Solving computational and memory requirements of feature-based simultaneous localization and mapping algorithms , 2003, IEEE Trans. Robotics Autom..

[54]  Shahriar Negahdaripour,et al.  On processing and registration of forward-scan acoustic video imagery , 2005, The 2nd Canadian Conference on Computer and Robot Vision (CRV'05).

[55]  Stephen R. Marsland,et al.  Fast, On-Line Learning of Globally Consistent Maps , 2002, Auton. Robots.

[56]  P. Firoozfam,et al.  An ROV Stereovision System for Ship-Hull Inspection , 2006, IEEE Journal of Oceanic Engineering.

[57]  Edwin Olson,et al.  Spatially-Adaptive Learning Rates for Online Incremental SLAM , 2007, Robotics: Science and Systems.

[58]  Matthew R. Walter,et al.  A Provably Consistent Method for Imposing Sparsity in Feature-Based SLAM Information Filters , 2007, ISRR.

[59]  Wolfram Burgard,et al.  Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[60]  Matthew R. Walter,et al.  An Experimental investigation of cooperative SLAM , 2004 .

[61]  S. B. Kang,et al.  Recovering 3 D Shape and Motion from Image Streams using Non-Linear Least Squares , 1993 .

[62]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[63]  John J. Leonard,et al.  Pure range-only sub-sea SLAM , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[64]  J J Koenderink,et al.  Affine structure from motion. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[65]  Hanumant Singh,et al.  Visually Navigating the RMS Titanic with SLAM Information Filters , 2005, Robotics: Science and Systems.

[66]  Paul A. Beardsley,et al.  Sequential Updating of Projective and Affine Structure from Motion , 1997, International Journal of Computer Vision.

[67]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[68]  Sebastian Thrun,et al.  FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges , 2003, IJCAI 2003.

[69]  Charles E. Thorpe,et al.  Simultaneous localization and mapping with detection and tracking of moving objects , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[70]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[71]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[72]  Gamini Dissanayake,et al.  D-SLAM: Decoupled Localization and Mapping for Autonomous Robots , 2005, ISRR.

[73]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[74]  Günther Schmidt,et al.  Building a global map of the environment of a mobile robot: the importance of correlations , 1997, Proceedings of International Conference on Robotics and Automation.

[75]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[76]  Franz S. Hover,et al.  A New Paradigm for Ship Hull Inspection Using a Holonomic Hovercapable AUV , 2004, ICINCO.

[77]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[78]  Andrew Zisserman,et al.  3D Motion recovery via affine Epipolar geometry , 1995, International Journal of Computer Vision.

[79]  Wolfram Burgard,et al.  Towards Lazy Data Association in SLAM , 2003, ISRR.

[80]  Eduardo Mario Nebot,et al.  Consistency of the EKF-SLAM Algorithm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[81]  Udo Frese A Proof for the Approximate Sparsity of SLAM Information Matrices , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[82]  John J. Leonard,et al.  Robust Mapping and Localization in Indoor Environments Using Sonar Data , 2002, Int. J. Robotics Res..

[83]  William Whittaker,et al.  Conditional particle filters for simultaneous mobile robot localization and people-tracking , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[84]  Thor I. Fossen,et al.  Guidance and control of ocean vehicles , 1994 .

[85]  Salah Sukkarieh,et al.  Airborne simultaneous localisation and map building , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[86]  Sebastian Thrun,et al.  Simultaneous Localization and Mapping , 2008, Robotics and Cognitive Approaches to Spatial Mapping.

[87]  Arthur G. O. Mutambara,et al.  Decentralized Estimation and Control for Multisensor Systems , 2019 .

[88]  Henrik I. Christensen,et al.  Graphical SLAM - a self-correcting map , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[89]  Luke Fletcher,et al.  Multimodal interaction with an autonomous forklift , 2010, 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[90]  Gomes de Freitas,et al.  Bayesian methods for neural networks , 2000 .

[91]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[92]  Long Quan,et al.  Relative 3D Reconstruction Using Multiple Uncalibrated Images , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[93]  Cyrill Stachniss,et al.  Exploration and mapping with mobile robots , 2006 .

[94]  Frank Dellaert,et al.  Square Root SAM , 2005, Robotics: Science and Systems.

[95]  J. Weng,et al.  Recursive-batch estimation of motion and structure from monocular image sequences , 1994 .

[96]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[97]  Hanumant Singh,et al.  Towards Precision Robotic Maneuvering, Survey, and Manipulation in Unstructured Undersea Environments , 1998 .

[98]  Gene H. Golub,et al.  Matrix computations , 1983 .

[99]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[100]  R. Eustice,et al.  Large area 3D reconstructions from underwater surveys , 2004, Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600).

[101]  Paul Newman,et al.  SLAM-Loop Closing with Visually Salient Features , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[102]  John J. Leonard,et al.  A Computationally Efficient Method for Large-Scale Concurrent Mapping and Localization , 2000 .

[103]  Pedro Larrañaga,et al.  An Introduction to Probabilistic Graphical Models , 2002, Estimation of Distribution Algorithms.

[104]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1997, J. Intell. Robotic Syst..

[105]  Tom Duckett,et al.  A multilevel relaxation algorithm for simultaneous localization and mapping , 2005, IEEE Transactions on Robotics.

[106]  Jean-Paul Laumond,et al.  Position referencing and consistent world modeling for mobile robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[107]  Alexei Makarenko,et al.  An experiment in integrated exploration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[108]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[109]  Matthew R. Walter,et al.  Vision-Based Reacquisition for Task-Level Control , 2010, ISER.

[110]  Richard I. Hartley,et al.  In defence of the 8-point algorithm , 1995, Proceedings of IEEE International Conference on Computer Vision.

[111]  John J. Leonard,et al.  Consistent, Convergent, and Constant-Time SLAM , 2003, IJCAI.

[112]  Sebastian Thrun,et al.  Results for outdoor-SLAM using sparse extended information filters , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[113]  Stephen R. Marsland,et al.  Learning globally consistent maps by relaxation , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[114]  Hanumant Singh,et al.  Visually Mapping the RMS Titanic: Conservative Covariance Estimates for SLAM Information Filters , 2006, Int. J. Robotics Res..

[115]  Matthew R. Walter,et al.  Consistent cooperative localization , 2009, 2009 IEEE International Conference on Robotics and Automation.

[116]  Peter Cheeseman,et al.  A stochastic map for uncertain spatial relationships , 1988 .

[117]  Jeffrey K. Uhlmann,et al.  A non-divergent estimation algorithm in the presence of unknown correlations , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[118]  J. Vaganay,et al.  Ship Hull Inspection with the HAUV: US Navy and NATO Demonstrations Results , 2006, OCEANS 2006.

[119]  Jules S. Jaffe,et al.  Computer modeling and the design of optimal underwater imaging systems , 1990 .

[120]  Matthew R. Walter,et al.  Reachability-guided sampling for planning under differential constraints , 2009, 2009 IEEE International Conference on Robotics and Automation.

[121]  Juan D. Tardós Representing partial and uncertain sensorial information using the theory of symmetries , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[122]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[123]  Udo Frese Treemap: An O(log n) Algorithm for Simultaneous Localization and Mapping , 2004, Spatial Cognition.

[124]  J. Bellingham,et al.  Autonomous Oceanographic Sampling Networks , 1993 .

[125]  Albert S. Huang,et al.  Ground robot navigation using uncalibrated cameras , 2010, 2010 IEEE International Conference on Robotics and Automation.

[126]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[127]  James G Bellingham,et al.  Robotics in Remote and Hostile Environments , 2007, Science.

[128]  Ryan M. Eustice,et al.  Large-area visually augmented navigation for autonomous underwater vehicles , 2005 .

[129]  Wolfram Burgard,et al.  Position Estimation for Mobile Robots in Dynamic Environments , 1998, AAAI/IAAI.

[130]  B. L. McGlamery,et al.  A Computer Model For Underwater Camera Systems , 1980, Other Conferences.

[131]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[132]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1992 .

[133]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[134]  Hugh F. Durrant-Whyte,et al.  Simultaneous Mapping and Localization with Sparse Extended Information Filters: Theory and Initial Results , 2004, WAFR.

[135]  Franz S. Hover,et al.  A Vehicle System for Autonomous Relative Survey of In-Water Ships , 2007 .

[136]  Tara N. Sainath,et al.  A voice-commandable robotic forklift working alongside humans in minimally-prepared outdoor environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[137]  Christopher G. Harris,et al.  3D positional integration from image sequences , 1988, Image Vis. Comput..

[138]  Hanumant Singh,et al.  Advances in Underwater Robot Vehicles for Deep Ocean Exploration: Navigation, Control, and Survey Operations , 2000 .

[139]  Raja Chatila,et al.  An Experimental System for Incremental Environment Modelling by an Autonomous Mobile Robot , 1989, ISER.

[140]  Richard Szeliski,et al.  Recovering 3D Shape and Motion from Image Streams Using Nonlinear Least Squares , 1994, J. Vis. Commun. Image Represent..

[141]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[142]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building: A Multisensor Fusion Approach , 2000 .

[143]  Matthew R. Walter,et al.  Appearance-based object reacquisition for mobile manipulation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[144]  Paul Newman,et al.  Outdoor SLAM using visual appearance and laser ranging , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[145]  Andrew W. Fitzgibbon,et al.  Automatic Camera Recovery for Closed or Open Image Sequences , 1998, ECCV.

[146]  Michael Bosse,et al.  Simultaneous Localization and Map Building in Large-Scale Cyclic Environments Using the Atlas Framework , 2004, Int. J. Robotics Res..

[147]  Timothy A. Davis,et al.  Modifying a Sparse Cholesky Factorization , 1999, SIAM J. Matrix Anal. Appl..

[148]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[149]  T. Speed,et al.  Gaussian Markov Distributions over Finite Graphs , 1986 .

[150]  Steven M. LaValle,et al.  Planning algorithms , 2006 .