Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system.

The computations performed by individual movement detectors are analyzed by intracellularly recording from an identified direction-selective motion-sensitive interneuron in the fly's brain and by comparing these results with model predictions based on movement detectors of the correlation type. Three main conclusions were drawn with respect to the movement-detection system of the fly: (1) The essential nonlinear interaction between the two movement-detector input channels can be characterized formally by a mathematically almost perfect multiplication process. (2) Even at high contrasts no significant nonlinearities seem to distort the time course of the movement-detector input signals. (3) The movement detectors of the fly are not perfectly antisymmetrical; i.e., they respond with different time courses and amplitudes to motion in their preferred and null directions. As a consequence of this property, the motion detectors can respond to some degree to stationary patterns whose brightness is modulated in time. Moreover, the direction selectivity, i.e., the relative difference of the responses to motion in the preferred and null directions, depends on the contrast and on the spatial-frequency content of the stimulus pattern.

[1]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[2]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[3]  D. Varjú Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster , 1959 .

[4]  B. Hassenstein Optokinetische Wirksamkeit bewegter periodischer Muster (Nach Messungen am Rüsselkäfer Chlorophanus viridis) , 1959 .

[5]  W. Reichardt,et al.  Übertragungseigenschaften im Auswertesystem für das Bewegungssehen , 1959 .

[6]  W Reichardt,et al.  Autocorrelation, a principle for evaluation of sensory information by the central nervous system , 1961 .

[7]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[8]  G. D. Mccann,et al.  Optomotor response studies of insect vision , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[10]  K. Kirschfeld The visual system of Musca: Studies on optics, structure and function , 1972 .

[11]  K G Götz,et al.  Principles of optomotor reactions in insects. , 1972, Bibliotheca ophthalmologica : supplementa ad ophthalmologica.

[12]  D. Tolhurst Separate channels for the analysis of the shape and the movement of a moving visual stimulus , 1973, The Journal of physiology.

[13]  O. Grüsser,et al.  Neuronal Mechanisms of Visual Movement Perception and Some Psychophysical and Behavioral Correlations , 1973 .

[14]  A. Pantle Motion aftereffect magnitude as a measure of the spatio-temporal response properties of direction-sensitive analyzers. , 1974, Vision research.

[15]  Bernward Pick,et al.  Visual Flicker Induces Orientation Behaviour in the Fly Musca , 1974 .

[16]  G. D. Mccann,et al.  Nonlinear identification theory models for successive stages of visual nervous systems of flies. , 1974, Journal of neurophysiology.

[17]  M. Sanders Handbook of Sensory Physiology , 1975 .

[18]  J. Limb,et al.  Estimating the Velocity of Moving Images in Television Signals , 1975 .

[19]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. , 1976, Journal of neurophysiology.

[20]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[21]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[22]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[23]  E. Wist,et al.  The spatial frequency effect on perceived velocity , 1976, Vision Research.

[24]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[26]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[27]  H. Bülthoff,et al.  Analogous motion illusion in man and fly , 1979, Nature.

[28]  We Reichardt,et al.  Functional characterization of neural interactions through an analysis of behavior , 1979 .

[29]  R. Shapley,et al.  Receptive field mechanisms of cat X and Y retinal ganglion cells , 1979, The Journal of general physiology.

[30]  G. Sandini,et al.  Responses of visual cortical cells to periodic and non‐periodic stimuli. , 1979, The Journal of physiology.

[31]  D. H. Kelly Motion and vision. II. Stabilized spatio-temporal threshold surface. , 1979, Journal of the Optical Society of America.

[32]  H. A. K. Mastebroek,et al.  Movement detection: Performance of a wide-field element in the visual system of the blowfly , 1980, Vision Research.

[33]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[34]  R. Holub,et al.  Response of Visual Cortical Neurons of the cat to moving sinusoidal gratings: response-contrast functions and spatiotemporal interactions. , 1981, Journal of neurophysiology.

[35]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[36]  D. Burr,et al.  Contrast sensitivity at high velocities , 1982, Vision Research.

[37]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[38]  J. J. Koenderink,et al.  Temporal properties of the visual detectability of moving spatial white noise , 2004, Experimental Brain Research.

[39]  C. Enroth-Cugell,et al.  Spatio‐temporal interactions in cat retinal ganglion cells showing linear spatial summation. , 1983, The Journal of physiology.

[41]  L Ganz,et al.  Mechanism of directional selectivity in simple neurons of the cat's visual cortex analyzed with stationary flash sequences. , 1984, Journal of neurophysiology.

[42]  W. H. Zaagman,et al.  Saturation in a wide-field, directionally selective movement detection system in fly vision , 1984, Vision Research.

[43]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[44]  Erich Buchner,et al.  Behavioural Analysis of Spatial Vision in Insects , 1984 .

[45]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[46]  M. Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .

[47]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[48]  O J Braddick,et al.  Temporal Properties of the Short-Range Process in Apparent Motion , 1985, Perception.

[49]  N. Franceschini,et al.  Early processing of colour and motion in a mosaic visual system. , 1985, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.

[50]  A. Johnston,et al.  Invariant tuning of motion aftereffect , 1985, Vision Research.

[51]  D. Burr,et al.  Spatial and temporal selectivity of the human motion detection system , 1985, Vision Research.

[52]  H. Spitzer,et al.  A complex-cell receptive-field model. , 1985, Journal of neurophysiology.

[53]  D. Burr,et al.  Spatial and temporal properties of neurons of the lateral suprasylvian cortex of the cat. , 1986, Journal of neurophysiology.

[54]  C. Baker,et al.  Spatial receptive-field properties of direction-selective neurons in cat striate cortex. , 1986, Journal of neurophysiology.

[55]  B Moulden,et al.  Some Tests of the Marr-Ullman Model of Movement Detection , 1986, Perception.

[56]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. , 1986, Journal of neurophysiology.

[57]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. , 1986, Journal of neurophysiology.

[58]  C. Koch,et al.  Functional properties of models for direction selectivity in the retina , 1987, Synapse.

[59]  Klein,et al.  Nonlinear directionally selective subunits in complex cells of cat striate cortex. , 1987, Journal of neurophysiology.

[60]  C. Koch,et al.  The analysis of visual motion: from computational theory to neuronal mechanisms. , 1986, Annual review of neuroscience.

[61]  Franklin Harold Schuling Processing of moving images in natural and artificial visual systems , 1988 .

[62]  Curtis L. Baker,et al.  Space-time separability of direction selectivity in cat striate cortex neurons , 1988, Vision Research.

[63]  A. Borst,et al.  Transient and steady-state response properties of movement detectors. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[64]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .