A Computational Constructivist Model as an Anticipatory Learning Mechanism for Coupled Agent–Environment Systems

Context: The advent of a general artificial intelligence mechanism that learns like humans do would represent the realization of an old and major dream of science. It could be achieved by an …

[1]  W. Ashby Design for a Brain , 1954 .

[2]  J. Piaget The construction of reality in the child , 1954 .

[3]  R. Bellman A Markovian Decision Process , 1957 .

[4]  Kenneth L. Artis Design for a Brain , 1961 .

[5]  W. Ashby,et al.  Every Good Regulator of a System Must Be a Model of That System , 1970 .

[6]  J. Piaget La construction du réel chez l'enfant , 1973 .

[7]  Gordon Pask,et al.  A theory of conversations and individuals (Exemplified by the Learning Process on CASTE) , 1973 .

[8]  R. Swinburne,et al.  The Philosophy of Karl Popper , 1975 .

[9]  M. N. Ozer A Cybernetic Approach to the Assessment of Children: Toward a More Humane Use of Human Beings , 1979 .

[10]  Ilya Prigogine,et al.  From Being To Becoming , 1980 .

[11]  John R. Searle,et al.  Minds, brains, and programs , 1980, Behavioral and Brain Sciences.

[12]  H. Maturana,et al.  Autopoiesis and Cognition , 1980 .

[13]  G. Pask Organisational closure of potentially conscious systems , 1981 .

[14]  G. Ferro-Luzzi On Evolutionary Epistemology , 1982, Current Anthropology.

[15]  E. Gibson,et al.  On the Nature of Representation: A Case Study of James Gibson's Theory of Perception , 1983 .

[16]  R. Kitchener Piaget's theory of knowledge , 1986 .

[17]  Ronald L. Rivest,et al.  Diversity-based inference of finite automata , 1994, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[18]  Lucy A. Suchman,et al.  Plans and Situated Actions: The Problem of Human-Machine Communication (Learning in Doing: Social, , 1987 .

[19]  Lucy Suchman Plans and situated actions: the problem of human-machine communication , 1987 .

[20]  G. Reeke Marvin Minsky, The Society of Mind , 1991, Artif. Intell..

[21]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[22]  Gary L. Drescher,et al.  Made-up minds - a constructivist approach to artificial intelligence , 1991 .

[23]  B. Indurkhya,et al.  Metaphor and Cognition: An Interactionist Approach , 1993, CL.

[24]  R. L. Campbell,et al.  Knowing levels and the child's understanding of mind , 1993, Behavioral and Brain Sciences.

[25]  H. Joas Pragmatism and social theory , 1993 .

[26]  Leonard N. Foner,et al.  Paying Attention to What's Important: Using Focus of Attention to Improve Unsupervised Learning , 1994 .

[27]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[28]  Randall D. Beer,et al.  A Dynamical Systems Perspective on Agent-Environment Interaction , 1995, Artif. Intell..

[29]  Jun Tani,et al.  Model-based learning for mobile robot navigation from the dynamical systems perspective , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[30]  R. L. Campbell,et al.  Topologies of learning and development , 1996 .

[31]  Stevo Bozinovski,et al.  Interactionist-expectative view on agency and learning , 1997 .

[32]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[33]  J. Piaget,et al.  The origin of intelligence in the child , 1997 .

[34]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[35]  Doina Precup,et al.  Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning , 1999, Artif. Intell..

[36]  L. Barsalou,et al.  Whither structured representation? , 1999, Behavioral and Brain Sciences.

[37]  Wolfgang Stolzmann,et al.  An Introduction to Anticipatory Classifier Systems , 1999, Learning Classifier Systems.

[38]  Stewart W. Wilson,et al.  Learning Classifier Systems, From Foundations to Applications , 2000 .

[39]  Milos Hauskrecht,et al.  Value-Function Approximations for Partially Observable Markov Decision Processes , 2000, J. Artif. Intell. Res..

[40]  E. JeffreyGoldstein,et al.  Emergence as a Construct : History and Issues , 2000 .

[41]  Craig Boutilier,et al.  Stochastic dynamic programming with factored representations , 2000, Artif. Intell..

[42]  Zhengzhu Feng,et al.  Dynamic Programming for POMDPs Using a Factored State Representation , 2000, AIPS.

[43]  T. Oates,et al.  Grounding the Unobservable in the Observable: The Role and Representation of Hidden State in Concept Formation and Refinement , 2001 .

[44]  Ronald E. Parr,et al.  Solving Factored POMDPs with Linear Value Functions , 2001 .

[45]  G. Aschersleben,et al.  The Theory of Event Coding (TEC): a framework for perception and action planning. , 2001, The Behavioral and brain sciences.

[46]  A. Shwartz,et al.  Handbook of Markov decision processes : methods and applications , 2002 .

[47]  Tracy Brown,et al.  The Embodied Mind: Cognitive Science and Human Experience , 2002, Cybern. Hum. Knowing.

[48]  Martin V. Butz,et al.  Anticipatory Learning Classifier Systems , 2002, Genetic Algorithms and Evolutionary Computation.

[49]  H. Foerster Understanding Understanding , 2002, Springer New York.

[50]  Paul A. Crook,et al.  Could Active Perception Aid Navigation of Partially Observable Grid Worlds? , 2003, ECML.

[51]  Shobha Venkataraman,et al.  Efficient Solution Algorithms for Factored MDPs , 2003, J. Artif. Intell. Res..

[52]  Chris Thornton Indirect sensing through abstractive learning , 2003, Intell. Data Anal..

[53]  Olivier Sigaud,et al.  Anticipatory Behavior in Adaptive Learning Systems: Foundations, Theories, and Systems , 2003 .

[54]  Michael L. Anderson Embodied Cognition: A field guide , 2003, Artif. Intell..

[55]  Peter Stone,et al.  Learning Predictive State Representations , 2003, ICML.

[56]  T. Ziemke What’s that Thing Called Embodiment? , 2003 .

[57]  Joachim Hoffmann,et al.  Anticipatory Behavioral Control , 2003, ABiALS.

[58]  Randall D. Beer,et al.  Autopoiesis and Cognition in the Game of Life , 2004, Artificial Life.

[59]  Charles Lee Isbell,et al.  Schema Learning: Experience-Based Construction of Predictive Action Models , 2004, NIPS.

[60]  Michael R. James,et al.  Predictive State Representations: A New Theory for Modeling Dynamical Systems , 2004, UAI.

[61]  Domenico Parisi,et al.  Internal robotics , 2004, Connect. Sci..

[62]  Aude Billard,et al.  From Animals to Animats , 2004 .

[63]  Jean-Christophe Buisson,et al.  A rhythm recognition computer program to advocate interactivist perception , 2004, Cogn. Sci..

[64]  Andrew G. Barto,et al.  A causal approach to hierarchical decomposition of factored MDPs , 2005, ICML.

[65]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[66]  G. Dietrich,et al.  Stone knapping : Khambhat (India), a unique opportunity ? , 2005 .

[67]  A. W. Smitman,et al.  Stone knapping: The necessary conditions for a uniquely hominid behaviour , 2005 .

[68]  Rw Byrne The maker not the tool: The cognitive significance of great ape manual skills , 2005 .

[69]  Guy Shani,et al.  Model-Based Online Learning of POMDPs , 2005, ECML.

[70]  Charles Lee Isbell,et al.  Looping suffix tree-based inference of partially observable hidden state , 2006, ICML.

[71]  Olivier Sigaud,et al.  Learning the structure of Factored Markov Decision Processes in reinforcement learning problems , 2006, ICML.

[72]  Georgi Stojanov,et al.  On Curiosity in Intelligent Robotic Systems , 2006, AAAI Fall Symposium: Interaction and Emergent Phenomena in Societies of Agents.

[73]  Marc Toussaint,et al.  Probabilistic inference for solving discrete and continuous state Markov Decision Processes , 2006, ICML.

[74]  Xabier E. Barandiaran,et al.  On What Makes Certain Dynamical Systems Cognitive: A Minimally Cognitive Organization Program , 2006, Adapt. Behav..

[75]  Michael L. Littman,et al.  Efficient Structure Learning in Factored-State MDPs , 2007, AAAI.

[76]  B. Scott The Co-Emergence of Parts and Wholes in Psychological Individuation , 2007 .

[77]  L. Steffe,et al.  Piaget and the radical constructivist epistemology , 2007 .

[78]  Kee-Eung Kim,et al.  Symbolic Heuristic Search Value Iteration for Factored POMDPs , 2008, AAAI.

[79]  Xabier E. Barandiaran,et al.  Adaptivity: From Metabolism to Behavior , 2008, Adapt. Behav..

[80]  Mark H. Bickhard,et al.  The interactivist model , 2009, Synthese.

[81]  P. Robbins,et al.  The Cambridge Handbook of Situated Cognition , 2001 .

[82]  Guy Shani,et al.  Efficient ADD Operations for Point-Based Algorithms , 2008, ICAPS.

[83]  Martin Volker Butz How and Why the Brain Lays the Foundations for a Conscious Self , 2008 .

[84]  L. Barsalou Grounded cognition. , 2008, Annual review of psychology.

[85]  Martin V. Butz,et al.  Anticipatory Learning Classifier Systems and Factored Reinforcement Learning , 2009, ABiALS.

[86]  Martin V. Butz,et al.  Anticipatory Behavior in Adaptive Learning Systems, From Psychological Theories to Artificial Cognitive Systems [4th Workshop on Anticipatory Behavior in Adaptive Learning Systems, ABiALS 2008, Munich, Germany, June 26-27, 2008] , 2009, ABiALS.

[87]  Frank Guerin Printed in the United Kingdom Learning Like Baby : A Survey of AI approaches , 2009 .

[88]  Robert A. Wilson,et al.  How to situate cognition: Letting nature take its course , 2009 .

[89]  Alexander Stoytchev,et al.  Some Basic Principles of Developmental Robotics , 2009, IEEE Transactions on Autonomous Mental Development.

[90]  Groupe Pdmia Markov Decision Processes In Artificial Intelligence , 2009 .

[91]  M. Bickhard Interactivism: A manifesto , 2009 .

[92]  Filipo Studzinski Perotto Un Mécanisme Constructiviste d'Apprentissage Automatique d'Anticipations pour des Agents Artificiels Situés , 2010 .

[93]  Moritz Tenorth,et al.  Towards performing everyday manipulation activities , 2010, Robotics Auton. Syst..

[94]  Olivier Buffet,et al.  Markov Decision Processes in Artificial Intelligence , 2010 .

[95]  Patrick M. Pilarski,et al.  Horde: a scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction , 2011, AAMAS.

[96]  M. Bickhard,et al.  Normativity: A Crucial Kind of Emergence , 2011, Human Development.

[97]  Frank Guerin,et al.  Learning like a baby: a survey of artificial intelligence approaches , 2011, The Knowledge Engineering Review.

[98]  Bernard Scott,et al.  What is a symbol? , 2011, Kybernetes.

[99]  Ben Goertzel,et al.  Theoretical Foundations of Artificial General Intelligence , 2012, Atlantis Thinking Machines.

[100]  Yiannis Aloimonos,et al.  The minimalist grammar of action , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[101]  The Pendulum Still Swings. , 2013 .

[102]  M. Bickhard,et al.  Beyond Principles and Programs: An Action Framework for Modeling Development , 2013, Human Development.

[103]  Jürgen Schmidhuber,et al.  Autocatalytic endogenous reflective architecture , 2013 .

[104]  Olivier Sigaud,et al.  Factored Markov Decision Processes , 2013 .

[105]  Kristinn R. Thórisson,et al.  Towards a Programming Paradigm for Control Systems with High Levels of Existential Autonomy , 2013, AGI.

[106]  Martin Volker Butz Separating goals from behavioral control: Implications from learning predictive modularizations , 2013 .

[107]  M. Bickhard,et al.  Stepping off the pendulum: Why only an action-based approach can transcend the nativist–empiricist debate , 2013 .

[108]  Ales Ude,et al.  A Simple Ontology of Manipulation Actions Based on Hand-Object Relations , 2013, IEEE Transactions on Autonomous Mental Development.

[109]  Andreas Krause,et al.  Advances in Neural Information Processing Systems (NIPS) , 2014 .

[110]  Richard S. Sutton,et al.  Multi-timescale nexting in a reinforcement learning robot , 2011, Adapt. Behav..