An algorithm for estimating time-varying commodity price models

Given the current financial crisis, there is renewed interest in modelling how the price of commodities change in the market. Traditionally, such models have assumed constant parameters. However, large and sudden changes in the parameters can also be anticipated due to market shocks. This paper is aimed at addressing this issue. We first describe a bias-variance trade-off in parameter estimation when sudden changes are considered. We then propose a mechanism to achieve a compromise between the observed bias and variance. A key ingredient of this mechanism is to use an estimator having a variable memory length.

[1]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  René Vidal,et al.  Identification of Hybrid Systems: A Tutorial , 2007, Eur. J. Control.

[3]  Stuart Barber,et al.  All of Statistics: a Concise Course in Statistical Inference , 2005 .

[4]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[5]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[6]  D.G. Dudley,et al.  Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.

[7]  P. E. Wellstead,et al.  Self-tuning systems , 1991 .

[8]  Alan S. Willsky Detection of abrupt changes in dynamic systems , 1985 .

[9]  John B. Moore,et al.  Hidden Markov Models: Estimation and Control , 1994 .

[10]  James D. Hamilton Analysis of time series subject to changes in regime , 1990 .

[11]  Eduardo S. Schwartz,et al.  Short-Term Variations and Long-Term Dynamics in Commodity Prices , 2000 .

[12]  Graham C. Goodwin,et al.  Parameter estimation of structural commodity price models , 2009 .

[13]  M. B. Zarrop,et al.  Self-Tuning Systems: Control and Signal Processing , 1991 .

[14]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[15]  Fredrik Gustafsson,et al.  Adaptive filtering and change detection , 2000 .

[16]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[17]  Brian D. O. Anderson,et al.  Open-loop vs. closed-loop identification of Box-Jenkins systems in a least costly identification context , 2007, 2007 European Control Conference (ECC).

[18]  Graham C. Goodwin,et al.  Short or Long Memory Estimators , 2009 .

[19]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[20]  Chang‐Jin Kim,et al.  State Space Models with Regime Switching , 1999 .

[21]  David Q. Mayne,et al.  Optimal Non-stationary Estimation of the Parameters of a Linear System with Gaussian Inputs † , 1963 .