A Survey on Oracle Techniques

The paper gives a survey on oracle approaches in nonlinear and combinatorial optimization. We present a formal definition of oracle algorithms in terms of mappings rather than in the framework of Turing machines with query tapes. We discuss the application of oracle techniques in fixed point theory and convex optimization. Using oracle arguments we derive lower bounds on the computational complexity in combinatorial optimization. Finally we examine formally equivalent concepts in contrast to their computational strength.

[1]  Clyde L. Monma,et al.  On the Computational Complexity of Integer Programming Problems , 1978 .

[2]  B. Korte,et al.  An Analysis of the Greedy Heuristic for Independence Systems , 1978 .

[3]  D. Welsh,et al.  The computational complexity of matroid properties , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Rainer Schrader,et al.  ON THE EXISTENCE OF FAST APPROXIMATION SCHEMES , 1981 .

[5]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[6]  Bernhard Korte,et al.  Complexity of Matroid Property Algorithms , 1982, SIAM J. Comput..

[7]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[8]  D. Hausmann,et al.  Algorithmic versus axiomatic definitions of matroids , 1981 .

[9]  Vasek Chvátal,et al.  Hard Knapsack Problems , 1980, Oper. Res..

[10]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[11]  Ronald L. Rivest,et al.  An Ω(n2 log n) lower bound to the shortest paths problem , 1977, STOC '77.

[12]  B. Korte,et al.  Oracle Algorithms for Fixed-Point Problems — An Axiomatic Approach , 1978 .

[13]  Richard J. Lipton,et al.  A Lower Bound of ½n² on Linear Search Programs for the Knapsack Problem , 1976, MFCS.

[14]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[15]  Eugene L. Lawler,et al.  Preemptive scheduling of uniform machines subject to release dates : (preprint) , 1979 .

[16]  Sartaj Sahni,et al.  Preemptive Scheduling with Due Dates , 1979, Oper. Res..

[17]  Clyde L. Monma,et al.  Some Remarks on a Classification of Oracle-Type-Algorithms , 1979 .

[18]  Bernhard Korte,et al.  Lower bounds on the worst-case complexity of some oracle algorithms , 1978, Discret. Math..

[19]  Bernhard Korte,et al.  Exponential Lower Bounds on a Class of Knapsack Algorithms , 1981, Math. Oper. Res..

[20]  Paul D. Seymour,et al.  Recognizing graphic matroids , 1981 .