A Survey on Oracle Techniques
暂无分享,去创建一个
[1] Clyde L. Monma,et al. On the Computational Complexity of Integer Programming Problems , 1978 .
[2] B. Korte,et al. An Analysis of the Greedy Heuristic for Independence Systems , 1978 .
[3] D. Welsh,et al. The computational complexity of matroid properties , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[4] Rainer Schrader,et al. ON THE EXISTENCE OF FAST APPROXIMATION SCHEMES , 1981 .
[5] Martin Grötschel,et al. The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..
[6] Bernhard Korte,et al. Complexity of Matroid Property Algorithms , 1982, SIAM J. Comput..
[7] Laurence A. Wolsey,et al. Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..
[8] D. Hausmann,et al. Algorithmic versus axiomatic definitions of matroids , 1981 .
[9] Vasek Chvátal,et al. Hard Knapsack Problems , 1980, Oper. Res..
[10] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[11] Ronald L. Rivest,et al. An Ω(n2 log n) lower bound to the shortest paths problem , 1977, STOC '77.
[12] B. Korte,et al. Oracle Algorithms for Fixed-Point Problems — An Axiomatic Approach , 1978 .
[13] Richard J. Lipton,et al. A Lower Bound of ½n² on Linear Search Programs for the Knapsack Problem , 1976, MFCS.
[14] R. Solovay,et al. Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .
[15] Eugene L. Lawler,et al. Preemptive scheduling of uniform machines subject to release dates : (preprint) , 1979 .
[16] Sartaj Sahni,et al. Preemptive Scheduling with Due Dates , 1979, Oper. Res..
[17] Clyde L. Monma,et al. Some Remarks on a Classification of Oracle-Type-Algorithms , 1979 .
[18] Bernhard Korte,et al. Lower bounds on the worst-case complexity of some oracle algorithms , 1978, Discret. Math..
[19] Bernhard Korte,et al. Exponential Lower Bounds on a Class of Knapsack Algorithms , 1981, Math. Oper. Res..
[20] Paul D. Seymour,et al. Recognizing graphic matroids , 1981 .