Cooperation Between Underwater Vehicles

The underwater environment intensifies difficulties inherent in cooperation between autonomous vehicles by dramatically reducing their ability to communicate with each other. Lack of communication drives the need for decentralized control which in turn requires a shared view of the tasks and their status as the mission progresses. Decision-making, especially task allocation, requires low-bandwidth mechanisms for negotiation and achieving consensus. Strategies to obtain this low-bandwidth decision-making and control rely on both the availability of significant a priori information about the mission and tasks and careful design of the system.

[1]  Daniel J. Stilwell,et al.  Redundant manipulator techniques for partially decentralized path planning and control of a platoon of autonomous vehicles , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  David T. Hughes,et al.  Heterogeneous Underwater Networks for ASW: Technology and Techniques , 2008 .

[3]  Stefan B. Williams,et al.  Simultaneous localisation and mapping on the Great Barrier Reef , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[4]  Maurizio Porfiri,et al.  Environmental tracking and formation control of a platoon of autonomous vehicles subject to limited communication , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[5]  P. Willett,et al.  MIMO-OFDM for High-Rate Underwater Acoustic Communications , 2009, IEEE Journal of Oceanic Engineering.

[6]  Maja J. Mataric,et al.  A general algorithm for robot formations using local sensing and minimal communication , 2002, IEEE Trans. Robotics Autom..

[7]  R.P. Stokey,et al.  A Compact Control Language for AUV acoustic communication , 2005, Europe Oceans 2005.

[8]  Zoran Vukic,et al.  Introduction of Rotors to a Virtual Potentials UUV Trajectory Planning Framework , 2008 .

[9]  Gaurav S. Sukhatme,et al.  Planning and Implementing Trajectories for Autonomous Underwater Vehicles to Track Evolving Ocean Processes Based on Predictions from a Regional Ocean Model , 2010, Int. J. Robotics Res..

[10]  Jason R. Marden,et al.  Cooperative Control and Potential Games , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  Brian Neil Levine,et al.  A survey of practical issues in underwater networks , 2006, MOCO.

[12]  Martial Hebert,et al.  Autonomous Driving with Concurrent Goals and Multiple Vehicles: Mission Planning and Architecture , 2001, Auton. Robots.

[13]  Eamonn B. Mallon,et al.  Information flow, opinion polling and collective intelligence in house-hunting social insects. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[14]  James S. Albus,et al.  Metrics and Performance Measures for Intelligent Unmanned Ground Vehicles , 2002 .

[15]  A.J. Shafer,et al.  Autonomous cooperation of heterogeneous platforms for sea-based search tasks , 2008, OCEANS 2008.

[16]  Peter I. Corke,et al.  Data muling over underwater wireless sensor networks using an autonomous underwater vehicle , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[17]  Franz S. Hover,et al.  Towards Autonomous Ship Hull Inspection using the Bluefin HAUV , 2010 .

[18]  Brian Bingham,et al.  Techniques for Deep Sea Near Bottom Survey Using an Autonomous Underwater Vehicle , 2007, Int. J. Robotics Res..

[19]  Lynne E. Parker,et al.  A Complete Methodology for Generating Multi-Robot Task Solutions using ASyMTRe-D and Market-Based Task Allocation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[20]  Jason R. Marden,et al.  Autonomous Vehicle-Target Assignment: A Game-Theoretical Formulation , 2007 .

[21]  Fang Tang,et al.  Coalescent multi-robot teaming through ASyMTRe: a formal analysis , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[22]  Dean B Edwards,et al.  Synchronous navigation of AUVs using WHOI micro-modem 13-bit communications , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[23]  John G. Proakis,et al.  Evolution of Seaweb underwater acoustic networking , 2000, OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158).

[24]  Peter I. Corke,et al.  Data collection, storage, and retrieval with an underwater sensor network , 2005, SenSys '05.

[25]  M. Carreras,et al.  Feature extraction for underwater visual SLAM , 2011, OCEANS 2011 IEEE - Spain.

[26]  Naomi Ehrich Leonard,et al.  Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay , 2010, J. Field Robotics.

[27]  Michael O'Rourke,et al.  A MOOS module for autonomous underwater vehicle fleet control , 2009, OCEANS 2009.

[28]  P. Bhatta,et al.  Multi-AUV control and adaptive sampling in Monterey Bay , 2004, 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578).

[29]  R.W. Wall,et al.  Robust control of a platoon of underwater autonomous vehicles , 2004, Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600).

[30]  Multi-Static Detection and Localization of Buried Targets using Synthetic Aperture Iterative Time-Reversal Processing , 2009 .

[31]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[32]  James Ferguson Under-ice seabed mapping with AUVs , 2009, OCEANS 2009-EUROPE.

[33]  David T. Hughes,et al.  Antisubmarine warfare applications for autonomous underwater vehicles: The GLINT09 sea trial results , 2010, J. Field Robotics.

[34]  Jesse Pentzer,et al.  Measurement of magnetic field using collaborative AUVs , 2010, OCEANS'10 IEEE SYDNEY.

[35]  Jacob W. Crandall,et al.  Developing performance metrics for the supervisory control of multiple robots , 2007, 2007 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[36]  Gaurav S. Sukhatme,et al.  Simultaneous Tracking and Sampling of Dynamic Oceanographic Features with Autonomous Underwater Vehicles and Lagrangian Drifters , 2010, ISER.

[37]  C. List,et al.  Group decisions in humans and animals: a survey , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  Kevin D. LePage,et al.  Adaptive autonomous underwater vehicles for littoral surveillance , 2011, Intell. Serv. Robotics.

[39]  Gregory Dudek,et al.  Underwater human-robot interaction via biological motion identification , 2009, Robotics: Science and Systems.

[40]  Dula Nad,et al.  Using collaborative Autonomous Vehicles in Mine Countermeasures , 2010, OCEANS'10 IEEE SYDNEY.

[41]  Gregory Dudek,et al.  Combining Multi-robot Exploration and Rendezvous , 2011, 2011 Canadian Conference on Computer and Robot Vision.

[42]  R.E. Hansen,et al.  Applications of AUVs with SAS , 2008, OCEANS 2008.

[43]  Anthony Stentz,et al.  Using interpolation to improve path planning: The Field D* algorithm , 2006, J. Field Robotics.

[44]  Maria-Florina Balcan,et al.  Reducing mechanism design to algorithm design via machine learning , 2007, J. Comput. Syst. Sci..

[45]  Curt Schurgers,et al.  Sensor networks of freely drifting autonomous underwater explorers , 2006, WUWNet '06.

[46]  Sanem Sariel,et al.  Distributed Multi-AUV Coordination in Naval Mine Countermeasure Missions , 2006 .

[47]  D.L. Odell,et al.  A leader-follower algorithm for multiple AUV formations , 2004, 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578).

[48]  Luis Montano,et al.  Enforcing Network Connectivity in Robot Team Missions , 2010, Int. J. Robotics Res..

[49]  Giuseppe Casalino,et al.  RT2: A Real-Time Ray-Tracing method for acoustic distance evaluations among cooperating AUVs , 2010, OCEANS'10 IEEE SYDNEY.

[50]  Kristina Lerman,et al.  Analysis of Dynamic Task Allocation in Multi-Robot Systems , 2006, Int. J. Robotics Res..

[51]  James S. Albus,et al.  Features of Intelligence Required by Unmanned Ground Vehicles , 2000 .

[52]  John J. Leonard,et al.  Efficient AUV navigation fusing acoustic ranging and side-scan sonar , 2011, 2011 IEEE International Conference on Robotics and Automation.

[53]  Matthew R. Walter,et al.  An Experimental investigation of cooperative SLAM , 2004 .

[54]  Pere Ridao,et al.  Visual inspection of hydroelectric dams using an autonomous underwater vehicle , 2010, J. Field Robotics.

[55]  Stephen Cameron,et al.  Dynamic team hierarchies in communication-limited multi-robot exploration , 2010, 2010 IEEE Safety Security and Rescue Robotics.

[56]  J Williams,et al.  UNCLOS under ice survey - An historic AUV deployment in the Canadian high arctic , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[57]  Beom-Hee Lee,et al.  Advances in Sea Coverage Methods Using Autonomous Underwater Vehicles (AUVs) , 2008 .

[58]  Kristina Lerman,et al.  Autonomous Robots manuscript No. (will be inserted by the editor) Top–Down vs Bottom–up Methodologies in Multi–Agent System Design , 2022 .

[59]  Paul Newman,et al.  SLAM-Loop Closing with Visually Salient Features , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[60]  Gaurav S. Sukhatme,et al.  Multi-Robot Task Allocation in Uncertain Environments , 2003, Auton. Robots.

[61]  N Palomeras,et al.  A distributed architecture for enabling autonomous underwater Intervention Missions , 2010, 2010 IEEE International Systems Conference.

[62]  Paul S. Schenker,et al.  CAMPOUT: a control architecture for multirobot planetary outposts , 2000, SPIE Optics East.

[63]  Maja J. Mataric,et al.  Sold!: auction methods for multirobot coordination , 2002, IEEE Trans. Robotics Autom..

[64]  Jeffrey M. Bradshaw,et al.  A semantically rich policy based approach to robot control , 2006, ICINCO-RA.

[65]  C. W. Warren A technique for autonomous underwater vehicle route planning , 1990 .

[66]  J.R. Stack,et al.  Efficient reacquisition path planning for multiple autonomous underwater vehicles , 2004, Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600).