Insights from a refined decomposition of cloud feedbacks

Decomposing cloud feedback into components due to changes in several gross cloud properties provides valuable insights into its physical causes. Here we present a refined decomposition that separately considers changes in free tropospheric and low cloud properties, better connecting feedbacks to individual governing processes and avoiding ambiguities present in a commonly used decomposition. It reveals that three net cloud feedback components are robustly nonzero: positive feedbacks from increasing free tropospheric cloud altitude and decreasing low cloud cover and a negative feedback from increasing low cloud optical depth. Low cloud amount feedback is the dominant contributor to spread in net cloud feedback but its anticorrelation with other components damps overall spread. The ensemble mean free tropospheric cloud altitude feedback is roughly 60% as large as the standard cloud altitude feedback because it avoids aliasing in low cloud reductions. Implications for the “null hypothesis” climate sensitivity from well‐understood and robustly simulated feedbacks are discussed.

[1]  S. Klein,et al.  Constraining the low‐cloud optical depth feedback at middle and high latitudes using satellite observations , 2016 .

[2]  T. Schneider,et al.  Constraints on Climate Sensitivity from Space-Based Measurements of Low-Cloud Reflection , 2016 .

[3]  S. Bony,et al.  Thermodynamic control of anvil cloud amount , 2016, Proceedings of the National Academy of Sciences.

[4]  T. Storelvmo,et al.  On the relationships among cloud cover, mixed‐phase partitioning, and planetary albedo in GCMs , 2016 .

[5]  D. Hartmann,et al.  Observational evidence for a negative shortwave cloud feedback in middle to high latitudes , 2016 .

[6]  K. Taylor,et al.  Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity , 2016 .

[7]  T. Storelvmo,et al.  Observational constraints on mixed-phase clouds imply higher climate sensitivity , 2015, Science.

[8]  M. Webb,et al.  Mechanisms of the Negative Shortwave Cloud Feedback in Middle to High Latitudes , 2016 .

[9]  J. Norris,et al.  Reducing the uncertainty in subtropical cloud feedback , 2015 .

[10]  S. Klein,et al.  The relationship between interannual and long‐term cloud feedbacks , 2015 .

[11]  C. Bretherton Insights into low-latitude cloud feedbacks from high-resolution models , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  C. Zhai,et al.  Long‐term cloud change imprinted in seasonal cloud variation: More evidence of high climate sensitivity , 2015 .

[13]  S. Klein,et al.  Positive tropical marine low‐cloud cover feedback inferred from cloud‐controlling factors , 2015 .

[14]  M. Zelinka,et al.  Mixed‐phase cloud physics and Southern Ocean cloud feedback in climate models , 2015 .

[15]  M. Webb,et al.  The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models , 2015 .

[16]  Shin-ichi Iga,et al.  High cloud increase in a perturbed SST experiment with a global nonhydrostatic model including explicit convective processes , 2014 .

[17]  S. Bony,et al.  Spread in model climate sensitivity traced to atmospheric convective mixing , 2014, Nature.

[18]  T. Mauritsen,et al.  Forcing and feedback in the MPI‐ESM‐LR coupled model under abruptly quadrupled CO2 , 2013 .

[19]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[20]  S. Klein,et al.  Low‐cloud optical depth feedback in climate models , 2013 .

[21]  B. Stevens,et al.  Atmospheric component of the MPI‐M Earth System Model: ECHAM6 , 2013 .

[22]  Bjorn Stevens,et al.  Water in the atmosphere , 2013 .

[23]  Olivier Geoffroy,et al.  Transient Climate Response in a Two-Layer Energy-Balance Model. Part II: Representation of the Efficacy of Deep-Ocean Heat Uptake and Validation for CMIP5 AOGCMs , 2013 .

[24]  H. Tsujino,et al.  Basic performance of a new earth system model of the Meteorological Research Institute (MRI-ESM1) , 2013 .

[25]  K. Taylor,et al.  Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5 , 2012 .

[26]  Cecilia M. Bitz,et al.  Time-Varying Climate Sensitivity from Regional Feedbacks , 2012 .

[27]  Mark D. Zelinka,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth , 2012 .

[28]  Shin-ichi Iga,et al.  Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes , 2012 .

[29]  D. Hartmann,et al.  Testing the Role of Radiation in Determining Tropical Cloud-Top Temperature , 2012 .

[30]  Stephen A. Klein,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels , 2012 .

[31]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[32]  S. Emori,et al.  MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments , 2011 .

[33]  K. Denman,et al.  Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases , 2011 .

[34]  C. Jones,et al.  Interactive comment on “ Development and evaluation of an Earth-system model – HadGEM 2 ” , 2011 .

[35]  T. Takemura,et al.  Geoscientific Model Development MIROC-ESM 2010 : model description and basic results of CMIP 5-20 c 3 m experiments , 2011 .

[36]  H. Hasumi,et al.  Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity , 2010, Journal of Climate.

[37]  Mark D. Zelinka,et al.  The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics , 2010 .

[38]  R. Marchand,et al.  A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS , 2010 .

[39]  Mark D. Zelinka,et al.  Why is longwave cloud feedback positive , 2010 .

[40]  T. Wong,et al.  Cloud and radiative characteristics of tropical deep convective systems in extended cloud objects from CERES observations. , 2009 .

[41]  Gerald G. Mace,et al.  Critical Evaluation of the ISCCP Simulator Using Ground-Based Remote Sensing Data , 2009 .

[42]  Robert Burgman,et al.  Observational and Model Evidence for Positive Low-Level Cloud Feedback , 2009, Science.

[43]  Sandrine Bony,et al.  An Assessment of the Primary Sources of Spread of Global Warming Estimates from Coupled Atmosphere–Ocean Models , 2008 .

[44]  Michael J. Garay,et al.  Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship-based observations , 2008 .

[45]  M. Webb,et al.  Towards Understanding Cloud Response in Atmospheric GCMs : The Use of Tendency Diagnostics , 2008 .

[46]  G. Roe,et al.  Why Is Climate Sensitivity So Unpredictable? , 2007, Science.

[47]  Dennis L. Hartmann,et al.  Testing the Fixed Anvil Temperature Hypothesis in a Cloud-Resolving Model , 2007 .

[48]  Bruce A. Wielicki,et al.  Statistical Analyses of Satellite Cloud Object Data from CERES. Part II: Tropical Convective Cloud Objects during 1998 El Niño and Evidence for Supporting the Fixed Anvil Temperature Hypothesis , 2007 .

[49]  S. Bony,et al.  The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection , 2006 .

[50]  W. Collins,et al.  The Formulation and Atmospheric Simulation of the Community Atmosphere Model Version 3 (CAM3) , 2006 .

[51]  Yoko Tsushima,et al.  Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study , 2006 .

[52]  G. Martin,et al.  The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: Model Description and Global Climatology , 2006 .

[53]  Michel Crucifix,et al.  The new hadley centre climate model (HadGEM1) : Evaluation of coupled simulations , 2006 .

[54]  S. Klein,et al.  GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics , 2006 .

[55]  N. McFarlane,et al.  The role of shallow convection in the water and energy cycles of the atmosphere , 2005 .

[56]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[57]  Jonathan M. Gregory,et al.  A new method for diagnosing radiative forcing and climate sensitivity , 2004 .

[58]  R. Sausen,et al.  Contributions of Anthropogenic and Natural Forcing to Recent Tropopause Height Changes , 2003, Science.

[59]  Dennis L. Hartmann,et al.  An important constraint on tropical cloud ‐ climate feedback , 2002 .

[60]  Q. Fu,et al.  Tropical Convection and the Energy Balance at the Top of the Atmosphere , 2001 .

[61]  Leon D. Rotstayn,et al.  Climate feedbacks in a general circulation model incorporating prognostic clouds , 2001 .

[62]  S. Bony,et al.  Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models , 2001 .

[63]  A. Jones,et al.  The response of the climate system to the indirect effects of anthropogenic sulfate aerosol , 2001 .

[64]  John F. B. Mitchell,et al.  Transient Climate Change in the Hadley Centre Models: The Role of Physical Processes , 2001 .

[65]  M. Schlesinger,et al.  Description and performance of the UIUC 24‐layer stratosphere/troposphere general circulation model , 2000 .

[66]  V. Pope,et al.  The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3 , 2000 .

[67]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[68]  S. Klein,et al.  Validation and Sensitivities of Frontal Clouds Simulated by the ECMWF Model , 1999 .

[69]  G. Stenchikov,et al.  Radiative forcing by volcanic aerosols from 1850 to 1994 , 1999 .

[70]  George C. Craig,et al.  Sensitivity of Tropical Convection to Sea Surface Temperature in the Absence of Large-Scale Flow , 1999 .

[71]  J. Kiehl On the Observed Near Cancellation between Longwave and Shortwave Cloud Forcing in Tropical Regions , 1994 .

[72]  T. Ackerman,et al.  Heating rates in tropical anvils , 1988 .

[73]  Harshvardhan,et al.  Thermodynamic constraint on the cloud liquid water feedback in climate models , 1987 .

[74]  R. Somerville Cloud optical thickness feedbacks in the CO2 climate problem , 1984 .

[75]  Graeme L. Stephens,et al.  Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes , 1978 .

[76]  G. W. Paltridge,et al.  Radiation Profiles in Extended Water Clouds. III: Observations , 1978 .