Robust Geometric Computation

Nonrobustness refers to qualitative or catastrophic failures in geometric algorithms arising from numerical errors. Section 45.1 provides background on these problems. Although nonrobustness is already an issue in “purely numerical” computation, the problem is compounded in “geometric computation.” In Section 45.2 we characterize such computations. Researchers trying to create robust geometric software have tried two approaches: making fixed-precision computation robust (Section 45.3), and making the exact approach viable (Section 45.4). Another source of nonrobustness is the phenomenon of degenerate inputs. General methods for treating degenerate inputs are described in Section 45.5. For some problems the exact approach may be expensive or infeasible. To ensure robustness in this setting, a recent extension of exact computation, the so-called “soft exact approach,” has been proposed. This is described in Section 45.6.

[1]  Klaus Weihrauch,et al.  Levels of Degeneracy and Exact Lower Complexity Bounds for Geometric Algorithms , 1994, CCCG.

[2]  Daniel Richardson,et al.  Zero Tests for Constants in Simple Scientific Computation , 2007, Math. Comput. Sci..

[3]  Victor J. Milenkovic,et al.  Double precision geometry: a general technique for calculating line and segment intersections using rounded arithmetic , 1989, 30th Annual Symposium on Foundations of Computer Science.

[4]  Daniel Richardson,et al.  Counterexamples to the uniformity conjecture , 2006, Comput. Geom..

[5]  Chee-Keng Yap,et al.  Recent progress in exact geometric computation , 2005, J. Log. Algebraic Methods Program..

[6]  Ron Wein,et al.  High-Level Filtering for Arrangements of Conic Arcs , 2002, ESA.

[7]  Kurt Mehlhorn,et al.  Classroom Examples of Robustness Problems in Geometric Computations , 2004, ESA.

[8]  Stefan Funke,et al.  Exact geometric predicates using cascaded computation , 1998, SCG '98.

[9]  Victor J. Milenkovic,et al.  Rational Orthogonal Approximations to Orthogonal Matrices , 1993, Comput. Geom..

[10]  Victor J. Milenkovic,et al.  Numerical stability of algorithms for line arrangements , 1991, SCG '91.

[11]  John D. Hobby,et al.  Practical segment intersection with finite precision output , 1999, Comput. Geom..

[12]  Dan Halperin,et al.  A perturbation scheme for spherical arrangements with application to molecular modeling , 1997, SCG '97.

[13]  Raimund Seidel,et al.  Efficient Perturbations for Handling Geometric Degeneracies , 1997, Algorithmica.

[14]  Kokichi Sugihara,et al.  A solid modelling system free from topological inconsistency , 1990 .

[15]  Thomas Ottmann,et al.  Numerical stability of geometric algorithms , 1987, SCG '87.

[16]  Christian P. Ullrich,et al.  Computer Arithmetic and Self-Validating Numerical Methods , 1990, Notes and reports in mathematics in science and engineering.

[17]  José E. Moreira,et al.  Hypergeometric Functions in Exact Geometric Computation , 2002, CCA.

[18]  Michael Seel,et al.  Planar Nef polyhedra and generic higher-dimensional geometry , 2001 .

[19]  Maurice Mignotte,et al.  Identification of Algebraic Numbers , 1982, J. Algorithms.

[20]  Chee-Keng Yap,et al.  A geometric consistency theorem for a symbolic perturbation scheme , 1988, SCG '88.

[21]  Steven Fortune Vertex-Rounding a Three-Dimensional Polyhedral Subdivision , 1999, Discret. Comput. Geom..

[22]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.

[23]  Kurt Mehlhorn,et al.  Controlled Perturbation for Voronoi Diagrams , 2004 .

[24]  Hazel Everett,et al.  The Voronoi diagram of three arbitrary lines in R3 , 2009 .

[25]  Victor Y. Pan,et al.  Certification of Numerical Computation of the Sign of the Determinant of a Matrix , 2001, Algorithmica.

[26]  Elmar Schömer,et al.  Complete, exact, and efficient computations with cubic curves , 2004, SCG '04.

[27]  Kurt Mehlhorn,et al.  Checking geometric programs or verification of geometric structures , 1999, Comput. Geom..

[28]  Kokichi Sugihara,et al.  On Finite-Precision Representations of Geometric Objects , 1989, J. Comput. Syst. Sci..

[29]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[30]  John E. Hopcroft,et al.  Towards implementing robust geometric computations , 1988, SCG '88.

[31]  Daniel Richardson,et al.  The Uniformity Conjecture , 2000, CCA.

[32]  Chee-Keng Yap,et al.  Approximate Euclidean Shortest Paths in 3-Space , 1997, Int. J. Comput. Geom. Appl..

[33]  Jiaxun Yu Exact arithmetic solid modeling , 1992 .

[34]  Emo Welzl,et al.  One Sided Error Predicates in Geometric Computing , 1998, IFIP Congress: Fundamentals - Foundations of Computer Science.

[35]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[36]  Robert Sedgewick,et al.  Algorithms in C++ - part 5: graph algorithms (3. ed.) , 2014 .

[37]  Franco P. Preparata,et al.  Further results on arithmetic filters for geometric predicates , 1999, Comput. Geom..

[38]  Chee-Keng Yap,et al.  Lower bounds for zero-dimensional projections , 2009, ISSAC '09.

[39]  Gert Vegter,et al.  Isotopic approximation of implicit curves and surfaces , 2004, SGP '04.

[40]  Kurt Mehlhorn,et al.  Exact geometric computation in LEDA , 1995, SCG '95.

[41]  Kurt Mehlhorn,et al.  Algorithms for Complex Shapes with Certified Numerics and Topology Controlled Perturbation for Delaunay Triangulations , 2022 .

[42]  Kenneth L. Clarkson,et al.  Safe and effective determinant evaluation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[43]  Kurt Mehlhorn,et al.  A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons , 2002, ESA.

[44]  Jerzy W. Jaromczyk,et al.  Computing Convex Hull in a Floating Point Arithmetic , 1994, Comput. Geom..

[45]  Chee-Keng Yap,et al.  A core library for robust numeric and geometric computation , 1999, SCG '99.

[46]  Angus Macintyre,et al.  On the decidability of the real exponential field , 1996 .

[47]  Ioannis Z. Emiris,et al.  The predicates for the Voronoi diagram of ellipses , 2006, SCG '06.

[48]  Jochen Comes,et al.  An Easy to Use Implementation of Linear Perturbations within CGAL , 1999, WAE.

[49]  Deok-Soo Kim,et al.  Shortest Paths for Disc Obstacles , 2004, ICCSA.

[50]  Chee-Keng Yap,et al.  A new constructive root bound for algebraic expressions , 2001, SODA '01.

[51]  Edward R. Scheinerman,et al.  When Close Enough Is Close Enough , 2000, Am. Math. Mon..

[52]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[53]  Lee R. Nackman,et al.  Finding compact coordinate representations for polygons and polyhedra , 1990 .

[54]  Chee Yap,et al.  The exact computation paradigm , 1995 .

[55]  Christoph Burnikel,et al.  Exact computation of Voronoi diagrams and line segment intersections , 1996 .

[56]  Kokichi Sugihara,et al.  Topology-Oriented Implementation—An Approach to Robust Geometric Algorithms , 2000, Algorithmica.

[57]  Kurt Mehlhorn,et al.  Exact geometric computation made easy , 1999 .

[58]  Chee-Keng Yapy A Basis for Implementing Exact Geometric Algorithms , 1993 .

[59]  Giuseppe Liotta,et al.  Robust Proximity Queries: An Illustration of Degree-Driven Algorithm Design , 1998, SIAM J. Comput..

[60]  Manuel Blum,et al.  Self-Testing/Correcting with Applications to Numerical Problems , 1993, J. Comput. Syst. Sci..

[61]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[62]  Kurt Mehlhorn,et al.  A Strong and Easily Computable Separation Bound for Arithmetic Expressions Involving Radicals , 2000, Algorithmica.

[63]  Martin Held,et al.  FIST: Fast Industrial-Strength Triangulation of Polygons , 2001, Algorithmica.

[64]  Daniel Richardson,et al.  How to Recognize Zero , 1997, J. Symb. Comput..

[65]  Sylvain Pion,et al.  Constructive root bound for k-ary rational input numbers , 2006, Theor. Comput. Sci..

[66]  David P. Dobkin,et al.  Recipes for geometry and numerical analysis - Part I: an empirical study , 1988, SCG '88.

[67]  Mariette Yvinec,et al.  Efficient Exact Evaluation of Signs of Determinants , 1997, Symposium on Computational Geometry.

[68]  Jonathan Richard Shewchuk,et al.  Robust adaptive floating-point geometric predicates , 1996, SCG '96.

[69]  Bernd Gärtner,et al.  An efficient, exact, and generic quadratic programming solver for geometric optimization , 2000, SCG '00.

[70]  Steven Fortune,et al.  Polyhedral modelling with multiprecision integer arithmetic , 1997, Comput. Aided Des..

[71]  Kurt Mehlhorn,et al.  Structural filtering: A paradigm for efficient and exact geometric programs , 2005, CCCG.

[72]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[73]  Kurt Mehlhorn,et al.  On degeneracy in geometric computations , 1994, SODA '94.

[74]  Bernd Gärtner,et al.  Exact arithmetic at low cost—a case study in linear programming , 1999, SODA '98.

[75]  T. Chow What is a Closed-Form Number? , 1998, math/9805045.

[76]  Peter Schorn,et al.  Degeneracy in Geometric Computation and the Perturbation Approach , 1994, Comput. J..

[77]  Marek Teichmann,et al.  Smallest enclosing cylinders , 1996, SCG '96.

[78]  F. Frances Yao,et al.  Finite-resolution computational geometry , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[79]  David G. Kirkpatrick,et al.  Pseudo Approximation Algorithms with Applications to Optimal Motion Planning , 2002, SCG '02.

[80]  Dan Halperin,et al.  Constructing the Exact Voronoi Diagram of Arbitrary Lines in Three-Dimensional Space - with Fast Point-Location , 2010, ESA.

[81]  Dinesh Manocha,et al.  PRECISE: efficient multiprecision evaluation of algebraic roots and predicates for reliable geometric computation , 2001, SCG '01.

[82]  Sylvain Pion,et al.  Interval arithmetic yields efficient dynamic filters for computational geometry , 1998, SCG '98.

[83]  D. Michelucci An epsilon-Arithmetic for Removing Degeneracies , 1995 .

[84]  Chee-Keng Yap,et al.  Towards Exact Geometric Computation , 1997, Comput. Geom..

[85]  A. Baker Transcendental Number Theory , 1975 .

[86]  Sigal Raab,et al.  Controlled perturbation for arrangements of polyhedral surfaces with application to swept volumes , 1999, SCG '99.

[87]  Manuel Blum,et al.  Designing programs that check their work , 1989, STOC '89.

[88]  Carlo H. Séquin,et al.  Consistent calculations for solids modeling , 1985, SCG '85.

[89]  Chee Yap,et al.  A new number core for robust numerical and geometric libraries (invited talk) , 1998 .

[90]  Christos H. Papadimitriou,et al.  An Algorithm for Shortest-Path Motion in Three Dimensions , 1985, Inf. Process. Lett..

[91]  Bernard Mourrain,et al.  The DMM bound: multivariate (aggregate) separation bounds , 2010, ISSAC.

[92]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[93]  Vincent Lefèvre,et al.  MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.

[94]  Christopher J. Van Wyk,et al.  Static analysis yields efficient exact integer arithmetic for computational geometry , 1996, TOGS.

[95]  Jihun Yu,et al.  The Design of Core 2: A Library for Exact Numeric Computation in Geometry and Algebra , 2010, ICMS.

[96]  Raimund Seidel,et al.  The Nature and Meaning of Perturbations in Geometric Computing , 1994, STACS.

[97]  Michael Sagraloff,et al.  Exact geometric-topological analysis of algebraic surfaces , 2008, SCG '08.

[98]  Chee-Keng Yap,et al.  Approximate Euclidean shortest path in 3-space , 1994, SCG '94.

[99]  Michael Hoffmann,et al.  An adaptable and extensible geometry kernel , 2007, Comput. Geom..

[100]  Christopher J. Van Wyk,et al.  Efficient exact arithmetic for computational geometry , 1993, SCG '93.

[101]  M. Iri,et al.  Two Design Principles of Geometric Algorithms in Finite-Precision Arithmetic , 1989 .

[102]  Steven Fortune,et al.  Numerical stability of algorithms for 2-d Delaunay triangulations , 1995, Int. J. Comput. Geom. Appl..

[103]  Leonidas J. Guibas,et al.  Snap rounding line segments efficiently in two and three dimensions , 1997, SCG '97.

[104]  Victor J. Milenkovic,et al.  An Experiment Using LN for Exact Geometric Computations , 1993, CCCG.

[105]  Bruce Randall Donald,et al.  A rational rotation method for robust geometric algorithms , 1991, SCG '92.

[106]  Elmar Schömer,et al.  Computing a 3-dimensional cell in an arrangement of quadrics: exactly and actually! , 2001, SCG '01.

[107]  Kurt Mehlhorn,et al.  How to Compute the Voronoi Diagram of Line Segments: Theoretical and Experimental Results , 1994, ESA.

[108]  Hazel Everett,et al.  The Voronoi Diagram of Three Lines , 2007, SCG '07.

[109]  Daniel Richardson,et al.  Some undecidable problems involving elementary functions of a real variable , 1969, Journal of Symbolic Logic.

[110]  Stefan Schirra,et al.  Robustness and Precision Issues in Geometric Computation , 2000, Handbook of Computational Geometry.

[111]  Leonidas J. Guibas,et al.  Rounding arrangements dynamically , 1995, SCG '95.

[112]  Lee R. Nackman,et al.  Efficient Delaunay triangulation using rational arithmetic , 1991, TOGS.

[113]  Mark Segal,et al.  Using tolerances to guarantee valid polyhedral modeling results , 1990, SIGGRAPH.

[114]  Martin Held,et al.  VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments , 2001, Comput. Geom..

[115]  Michael Kerber,et al.  Fast and exact geometric analysis of real algebraic plane curves , 2007, ISSAC '07.

[116]  Klaus Weihrauch,et al.  Computable Analysis , 2005, CiE.

[117]  Steven Fortune,et al.  Stable maintenance of point set triangulations in two dimensions , 1989, 30th Annual Symposium on Foundations of Computer Science.

[118]  Michael T. Goodrich,et al.  Efficiently Approximating Polygonal Paths in Three and Higher Dimensions , 1998, SCG '98.

[119]  Chee-Keng Yap,et al.  Precision-Sensitive Euclidean Shortest Path in 3-Space , 2000, SIAM J. Comput..

[120]  Chee Yap Symbolic treatment of geometric degeneracies: Proceedings of the International IFIPS Conference on System Modeling and Optimization. Tokyo, 1987 , 1987 .

[121]  John F. Canny,et al.  A General Approach to Removing Degeneracies , 1995, SIAM J. Comput..

[122]  Beverly Sackler Controlled Perturbation for Arrangements of Circles , 2003 .

[123]  Kurt Mehlhorn,et al.  A Separation Bound for Real Algebraic Expressions , 2001, Algorithmica.