Relative information entropy in cosmology: The problem of information entanglement

Abstract The necessary information to distinguish a local inhomogeneous mass density field from its spatial average on a compact domain of the universe can be measured by relative information entropy. The Kullback–Leibler (KL) formula arises very naturally in this context, however, it provides a very complicated way to compute the mutual information between spatially separated but causally connected regions of the universe in a realistic, inhomogeneous model. To circumvent this issue, by considering a parametric extension of the KL measure, we develop a simple model to describe the mutual information which is entangled via the gravitational field equations. We show that the Tsallis relative entropy can be a good approximation in the case of small inhomogeneities, and for measuring the independent relative information inside the domain, we propose the Renyi relative entropy formula.

[1]  C. Tsallis Generalized entropy-based criterion for consistent testing , 1998 .

[2]  A. Plastino,et al.  A quantitative test of Gibbs' statistical mechanics , 1995 .

[3]  S Abe General pseudoadditivity of composable entropy prescribed by the existence of equilibrium. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  J. Stewart,et al.  Perturbations of space-times in general relativity , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  T. Buchert,et al.  Relative information entropy and Weyl curvature of the inhomogeneous Universe , 2012, 1208.3376.

[6]  R. Sussman,et al.  A dynamical system study of the inhomogeneous Λ-CDM model , 2010, 1004.0773.

[7]  Evolution of the density contrast in inhomogeneous dust models , 1998, gr-qc/9811035.

[8]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[9]  Early Universe Test of Nonextensive Statistics , 1997, astro-ph/9705068.

[10]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[11]  A. Rényi On the dimension and entropy of probability distributions , 1959 .

[12]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[13]  T S Biró,et al.  Zeroth law compatibility of nonadditive thermodynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Information entropy in cosmology. , 2004, Physical review letters.

[15]  Dark Matter and Dark Energy , 2004, astro-ph/0403324.

[16]  Tam'as S. Bir'o,et al.  A q-parameter bound for particle spectra based on black hole thermodynamics with Rényi entropy , 2013, 1309.4261.

[17]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity , 2012, 1205.6812.

[18]  Loh,et al.  Generalization of the Planck radiation law and application to the cosmic microwave background radiation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[20]  T. Buchert,et al.  Multiscale cosmology and structure-emerging dark energy: A plausibility analysis , 2010, 1002.3912.

[21]  H. Kodama,et al.  Cosmological Perturbation Theory , 1984 .

[22]  J. Bardeen,et al.  Gauge Invariant Cosmological Perturbations , 1980 .

[23]  Gunther Cornelissen,et al.  Relative entropy as a measure of inhomogeneity in general relativity , 2010, ArXiv.

[24]  H. Iguchi,et al.  Rényi Entropy and the Thermodynamic Stability of Black Holes , 2015, 1511.06963.

[25]  S. Hawking,et al.  Cosmological Event Horizons, Thermodynamics, and Particle Creation , 1977 .

[26]  M. Kamionkowski,et al.  Dark Matter and Dark Energy , 2007, 0706.2986.

[27]  Alfréd Rényi,et al.  Probability Theory , 1970 .

[28]  Hume A. Feldman,et al.  Theory of cosmological perturbations , 1992 .

[29]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[30]  L. Moscardini,et al.  Cosmology with Numerical Simulations , 2011 .

[31]  Generalized nonextensive thermodynamics applied to the cosmic background radiation in a Robertson-Walker universe. , 1996, Physical review letters.

[32]  Nan Li,et al.  Kullback–Leibler entropy and Penrose conjecture in the Lemaître–Tolman–Bondi model , 2014, 1411.4368.

[33]  I. Khalatnikov,et al.  Investigations in relativistic cosmology , 1963 .