Extended formulations in combinatorial optimization

This survey is concerned with the size of perfect formulations for combinatorial optimization problems. By “perfect formulation”, we mean a system of linear inequalities that describes the convex hull of feasible solutions, viewed as vectors. Natural perfect formulations often have a number of inequalities that is exponential in the size of the data needed to describe the problem. Here we are particularly interested in situations where the addition of a polynomial number of extra variables allows a formulation with a polynomial number of inequalities. Such formulations are called “compact extended formulations”. We survey various tools for deriving and studying extended formulations, such as Fourier’s procedure for projection, Minkowski-Weyl’s theorem, Balas’ theorem for the union of polyhedra, Yannakakis’ theorem on the size of an extended formulation, dynamic programming, and variable discretization. For each tool that we introduce, we present one or several examples of how this tool is applied. In particular, we present compact extended formulations for several graph problems involving cuts, trees, cycles and matchings, and for the mixing set, and we present the proof of Fiorini, Massar, Pokutta, Tiwary and de Wolf of an exponential lower bound for the cut polytope. We also present Bienstock’s approximate compact extended formulation for the knapsack problem, Goemans’ result on the size of an extended formulation for the permutahedron, and the Faenza-Kaibel extended formulation for orbitopes.

[1]  Thomas Rothvoß,et al.  Some 0/1 polytopes need exponential size extended formulations , 2011, Math. Program..

[2]  FRANCISCO BARAHONA Reducing Matching to Polynomial Size Linear Programming , 1993, SIAM J. Optim..

[3]  M. Yannakakis Expressing combinatorial optimization problems by linear programs , 1991, Symposium on the Theory of Computing.

[4]  David Avis,et al.  A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1992, Discret. Comput. Geom..

[5]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[6]  Oktay Günlük,et al.  Mixing mixed-integer inequalities , 2001, Math. Program..

[7]  Jack Edmonds,et al.  Matroids and the greedy algorithm , 1971, Math. Program..

[8]  V. Kaibel,et al.  Packing and partitioning orbitopes , 2006, math/0603678.

[9]  F. B. Shepherd,et al.  Formulations for the stable set polytope , 1992 .

[10]  Laurence A. Wolsey,et al.  Production Planning by Mixed Integer Programming , 2010 .

[11]  Hans Raj Tiwary,et al.  Exponential Lower Bounds for Polytopes in Combinatorial Optimization , 2011, J. ACM.

[12]  Michel X. Goemans,et al.  Smallest compact formulation for the permutahedron , 2015, Math. Program..

[13]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[14]  Stephen A. Vavasis,et al.  On the Complexity of Nonnegative Matrix Factorization , 2007, SIAM J. Optim..

[15]  E. Szemerédi,et al.  O(n LOG n) SORTING NETWORK. , 1983 .

[16]  Laurence A. Wolsey,et al.  Production Planning by Mixed Integer Programming (Springer Series in Operations Research and Financial Engineering) , 2006 .

[17]  Robert D. Carr,et al.  Compacting cuts: a new linear formulation for minimum cut , 2007, SODA '07.

[18]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[19]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[20]  Volker Kaibel,et al.  Constructing Extended Formulations from Reflection Relations , 2010, IPCO.

[21]  V. Kaibel Extended Formulations in Combinatorial Optimization , 2011, 1104.1023.

[22]  Bertrand Guenin A Characterization of Weakly Bipartite Graphs , 2000, Electron. Notes Discret. Math..

[23]  D. R. Fulkerson NOTES ON COMBINATORIAL MATHEMATICS: ANTI-BLOCKING POLYHEDRA , 1970 .

[25]  Hans Raj Tiwary,et al.  Extended Formulations for Polygons , 2011, Discret. Comput. Geom..

[26]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[27]  Laurence A. Wolsey,et al.  Tight formulations for some simple mixed integer programs and convex objective integer programs , 2003, Math. Program..

[28]  Jean Baptiste Joseph Fourier,et al.  Oeuvres de Fourier: Solution d'une question particulière du calcul des inégalités , 2013 .

[29]  Mathieu Van Vyve The Continuous Mixing Polyhedron , 2005, Math. Oper. Res..

[30]  Francisco Barahona,et al.  On cuts and matchings in planar graphs , 1993, Math. Program..

[31]  G. Ziegler Lectures on Polytopes , 1994 .

[32]  D. R. Fulkerson,et al.  On edge-disjoint branchings , 1976, Networks.

[33]  Laurence A. Wolsey,et al.  Projecting an Extended Formulation for Mixed-Integer Covers on Bipartite Graphs , 2010, Math. Oper. Res..

[34]  Leslie E. Trotter,et al.  On stable set polyhedra for K1, 3-free graphs , 1981, J. Comb. Theory, Ser. B.

[35]  Bert Gerards Compact systems for T-join and perfect matching polyhedra of graphs with bounded genus , 1991, Oper. Res. Lett..

[36]  Laurence A. Wolsey,et al.  Compact formulations as a union of polyhedra , 2005, Math. Program..

[37]  Gérard Cornuéjols,et al.  Polyhedral Approaches to Mixed Integer Linear Programming , 2010, 50 Years of Integer Programming.

[38]  Arkadi Nemirovski,et al.  On Polyhedral Approximations of the Second-Order Cone , 2001, Math. Oper. Res..

[39]  A. Schrijver A Course in Combinatorial Optimization , 1990 .

[40]  Alan J. Hoffman,et al.  Integral Boundary Points of Convex Polyhedra , 2010, 50 Years of Integer Programming.

[41]  Egon Balas,et al.  programming: Properties of the convex hull of feasible points * , 1998 .

[42]  P. Sedgwick Matching , 2009, BMJ : British Medical Journal.

[43]  Volker Kaibel,et al.  Branched Polyhedral Systems , 2010, IPCO.

[44]  Dirk Oliver Theis,et al.  Symmetry Matters for Sizes of Extended Formulations , 2012, SIAM J. Discret. Math..

[45]  Eugene L. Lawler,et al.  Parameterized Approximation Scheme for the Multiple Knapsack Problem , 2009, SIAM J. Comput..

[46]  M. R. Rao,et al.  Odd Minimum Cut-Sets and b-Matchings , 1982, Math. Oper. Res..

[47]  Volker Kaibel,et al.  Extended Formulations for Packing and Partitioning Orbitopes , 2008, Math. Oper. Res..

[48]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[49]  Gianpaolo Oriolo,et al.  Separating stable sets in claw-free graphs via Padberg-Rao and compact linear programs , 2012, SODA.

[50]  Laurence A. Wolsey,et al.  Polyhedra for lot-sizing with Wagner—Whitin costs , 1994, Math. Program..

[51]  Laurence A. Wolsey,et al.  Network Formulations of Mixed-Integer Programs , 2006, Math. Oper. Res..

[52]  Dirk Oliver Theis,et al.  Symmetry Matters for the Sizes of Extended Formulations , 2010, IPCO.

[53]  Ronald L. Rardin,et al.  Polyhedral Characterization of Discrete Dynamic Programming , 1990, Oper. Res..

[54]  Egon Balas,et al.  The perfectly Matchable Subgraph Polytope of an arbitrary graph , 1989, Comb..

[55]  Robert G. Jeroslow On defining sets of vertices of the hypercube by linear inequalities , 1975, Discret. Math..

[56]  Daniel Bienstock,et al.  Approximate formulations for 0-1 knapsack sets , 2008, Oper. Res. Lett..

[57]  Jack Edmonds,et al.  Matching, Euler tours and the Chinese postman , 1973, Math. Program..

[58]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[59]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[60]  Robert R. Meyer,et al.  On the existence of optimal solutions to integer and mixed-integer programming problems , 1974, Math. Program..

[61]  Daniel Bienstock,et al.  Tightening simple mixed-integer sets with guaranteed bounds , 2012, Math. Program..

[62]  Egon Balas,et al.  The perfectly matchable subgraph polytope of a bipartite graph , 1983, Networks.

[63]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[64]  Laurence A. Wolsey,et al.  Approximate extended formulations , 2006, Math. Program..

[65]  Noga Alon,et al.  Color-coding , 1995, JACM.

[66]  Ronald de Wolf,et al.  Nondeterministic Quantum Query and Communication Complexities , 2003, SIAM J. Comput..