Electricity swing option pricing by stochastic bilevel optimization: A survey and new approaches

We demonstrate how the problem of determining the ask price for electricity swing options can be considered as a stochastic bilevel program with asymmetric information. Unlike as for financial options, there is no way for basing the pricing method on no-arbitrage arguments. Two main situations are analyzed: if the seller has strong market power he/she might be able to maximize his/her utility, while in fully competitive situations he/she will just look for a price which makes profit and has acceptable risk. In both cases the seller has to consider the decision problem of a potential buyer – the valuation problem of determining a fair value for a specific option contract – and anticipate the buyer’s optimal reaction to any proposed strike price. We also discuss some methods for finding numerical solutions of stochastic bilevel problems with a special emphasis on using duality gap penalizations.

[1]  A. Eydeland Energy and Power Risk Management , 2002 .

[2]  G. Pflug,et al.  Approximations for Probability Distributions and Stochastic Optimization Problems , 2011 .

[3]  Patrice Marcotte,et al.  On the Pareto-optimality of Solutions to the Linear Bilevel Programming Problem , 1990 .

[4]  Yuri Kifer,et al.  Perfect and Partial Hedging for Swing Game Options in Discrete Time , 2009 .

[5]  P. Harker,et al.  A penalty function approach for mathematical programs with variational inequality constraints , 1991 .

[6]  Rémi Munos,et al.  Numerical Methods for the Pricing of Swing Options: A Stochastic Control Approach , 2006 .

[7]  Georg Still,et al.  Solving bilevel programs with the KKT-approach , 2012, Mathematical Programming.

[8]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[9]  Charles E. Blair,et al.  Computational Difficulties of Bilevel Linear Programming , 1990, Oper. Res..

[10]  L. Lasdon,et al.  Derivative evaluation and computational experience with large bilevel mathematical programs , 1990 .

[11]  Jeff T. Linderoth A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs , 2005, Math. Program..

[12]  W. Wiesemann,et al.  Pessimistic Bi-Level Optimization , 2012 .

[13]  Alexei A. Gaivoronski,et al.  Stochastic optimization for real time service capacity allocation under random service demand , 2012, Ann. Oper. Res..

[14]  Stephan Dempe,et al.  Natural gas bilevel cash-out problem: Convergence of a penalty function method , 2011, European Journal of Operational Research.

[15]  Ed Anan Shetty,et al.  Literature , 1965, Science.

[16]  S. Stoft Power System Economics: Designing Markets for Electricity , 2002 .

[17]  Ross Baldick,et al.  Interruptible Electricity Contracts from an Electricity Retailer's Point of View: Valuation and Optimal Interruption , 2006, Oper. Res..

[18]  Zita Marossy Commodities and Commodity Derivatives, Modeling and Pricing for Agriculturals, Metals and Energy, Helyette Geman, Wiley Finance (2005). 416 pages, ISBN: 978-0-470-01218-5 , 2007 .

[19]  Daniel Kuhn,et al.  Valuation of electricity swing options by multistage stochastic programming , 2009, Autom..

[20]  James R. Luedtke,et al.  Some results on the strength of relaxations of multilinear functions , 2012, Math. Program..

[21]  Stephan Dempe,et al.  Is bilevel programming a special case of a mathematical program with complementarity constraints? , 2012, Math. Program..

[22]  Patrice Marcotte,et al.  Exact and inexact penalty methods for the generalized bilevel programming problem , 1996, Math. Program..

[23]  Patrick Jaillet,et al.  Valuation of Commodity-Based Swing Options , 2004, Manag. Sci..

[24]  H. Bessembinder,et al.  Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets , 1999 .

[25]  Yongchao Liu,et al.  Stability Analysis of Two-Stage Stochastic Mathematical Programs with Complementarity Constraints via NLP Regularization , 2011, SIAM J. Optim..

[26]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[27]  Jitka Dupacová,et al.  Scenario reduction in stochastic programming , 2003, Math. Program..

[28]  F. Downton Stochastic Approximation , 1969, Nature.

[29]  Pushpendra Kumar,et al.  An Overview On Bilevel Programming , 2012 .

[30]  Ronald Hochreiter,et al.  A multi-stage stochastic programming model for managing risk-optimal electricity portfolios , 2010 .

[31]  A. Conejo,et al.  A Bilevel Stochastic Programming Approach for Retailer Futures Market Trading , 2009, IEEE Transactions on Power Systems.

[32]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[33]  J. Dupacová,et al.  Scenario reduction in stochastic programming: An approach using probability metrics , 2000 .

[34]  Jian Yao,et al.  Two-settlement electricity markets with price caps and Cournot generation firms , 2007, Eur. J. Oper. Res..

[35]  Herminia I. Calvete,et al.  A new approach for solving linear bilevel problems using genetic algorithms , 2008, Eur. J. Oper. Res..

[36]  G. Anandalingam,et al.  A penalty function approach for solving bi-level linear programs , 1993, J. Glob. Optim..

[37]  Daniel Kuhn,et al.  Multistage stochastic portfolio optimisation in deregulated electricity markets using linear decision rules , 2012, Eur. J. Oper. Res..

[38]  Fernando Zapatero,et al.  Monte Carlo Valuation of American Options through Computation of the Optimal Exercise Frontier , 2000, Journal of Financial and Quantitative Analysis.

[39]  Francisco Facchinei,et al.  A New Merit Function For Nonlinear Complementarity Problems And A Related Algorithm , 1997, SIAM J. Optim..

[40]  Michael Patriksson,et al.  Stochastic mathematical programs with equilibrium constraints , 1999, Oper. Res. Lett..

[41]  Marcia Helena Costa Fampa,et al.  Bilevel optimization applied to strategic pricing in competitive electricity markets , 2008, Comput. Optim. Appl..

[42]  G. Pflug,et al.  Stochastic approximation and optimization of random systems , 1992 .

[43]  C Ham,et al.  Getting into the swing. , 1999, Health Service Journal.

[44]  D. Pilipović,et al.  Energy Risk: Valuing and Managing Energy Derivatives , 1997 .

[45]  Alexander Boogert,et al.  Gas Storage Valuation Using a Monte Carlo Method , 2008 .

[46]  A. Lari-Lavassani,et al.  A DISCRETE VALUATION OF SWING OPTIONS , 2002 .

[47]  J. Bard Some properties of the bilevel programming problem , 1991 .

[48]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[49]  Raimund M. Kovacevic,et al.  Medium-term planning for thermal electricity production , 2013, OR Spectrum.

[50]  Maria Teresa Vespucci,et al.  A stochastic model for hedging electricity portfolio for an hydro-energy producer , 2010 .

[51]  Georg Ch. Pflug,et al.  Electricity swing options: Behavioral models and pricing , 2009, Eur. J. Oper. Res..

[52]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[53]  飯島 周,et al.  ACCEPTABILITY , 1971 .

[54]  Jane J. Ye,et al.  Approximating Stationary Points of Stochastic Mathematical Programs with Equilibrium Constraints via Sample Averaging , 2011 .

[55]  Dominik Möst,et al.  A survey of stochastic modelling approaches for liberalised electricity markets , 2010, Eur. J. Oper. Res..

[56]  Patrice Marcotte,et al.  A note on the Pareto optimality of solutions to the linear bilevel programming problem , 1991, Comput. Oper. Res..

[57]  Gilles Savard,et al.  The steepest descent direction for the nonlinear bilevel programming problem , 1990, Oper. Res. Lett..

[58]  Huifu Xu,et al.  Two-stage stochastic equilibrium problems with equilibrium constraints: modeling and numerical schemes , 2013 .

[59]  H. Geman Commodities and Commodity Derivatives: Modelling and Pricing for Agriculturals, Metals and Energy , 2005 .

[60]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[61]  B. J. Hiley,et al.  Getting into the swing , 1990, Nature.

[62]  Peter W. Glynn,et al.  Optimization of stochastic systems , 1986, WSC '86.

[63]  J. Outrata Necessary optimality conditions for Stackelberg problems , 1993 .

[64]  S. Dempe A necessary and a sufficient optimality condition for bilevel programming problems , 1992 .

[65]  Francisco Facchinei,et al.  A smoothing method for mathematical programs with equilibrium constraints , 1999, Math. Program..

[66]  A. C. Thompson Valuation of Path-Dependent Contingent Claims with Multiple Exercise Decisions over Time: The Case of Take-or-Pay , 1995, Journal of Financial and Quantitative Analysis.

[67]  Alfredo Ibáñez,et al.  Valuation by Simulation of Contingent Claims with Multiple Early Exercise Opportunities , 2004 .

[68]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[69]  Hans-Jakob Lüthi,et al.  Risk management of power portfolios and valuation of flexibility , 2006, OR Spectr..

[70]  Richard E. Wendell,et al.  Minimization of a Non-Separable Objective Function Subject to Disjoint Constraints , 1976, Oper. Res..

[71]  Daniel Kuhn,et al.  Stochastische Optimierung im Energiehandel: Entscheidungsunterstützung und Bewertung für das Portfoliomanagement , 2005 .

[72]  E. Aiyoshi,et al.  A solution method for the static constrained Stackelberg problem via penalty method , 1984 .

[73]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[74]  Laura Wynter Stochastic Bilevel Programs , 2009, Encyclopedia of Optimization.

[75]  Alexander Ising,et al.  Héylette Geman: Commodities and Commodity Derivatives - Modeling and Pricing for Agriculturals, Metals and Energy , 2006 .

[76]  Stein-Erik Fleten,et al.  Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer , 2007, Eur. J. Oper. Res..

[77]  Hans Föllmer,et al.  Quantile hedging , 1999, Finance Stochastics.

[78]  Yue Wu,et al.  A two stage stochastic equilibrium model for electricity markets with two way contracts , 2010, 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems.