Parameter estimation error bounds for Hammerstein nonlinear finite impulsive response models

Abstract This paper presents a parameter estimation algorithm for a class of Hammerstein nonlinear systems – input nonlinear FIR (finite impulse response) models, and studies in detail the convergence properties of the proposed identification algorithm in the stochastic framework, and derives the upper and lower bounds of the parameter estimation errors (PEE) from the available input–output data. The analysis indicates that the mean square PEE upper and lower bounds of the algorithm approach zero as the data length increases. A simulation example is given.

[1]  Er-Wei Bai Frequency domain identification of Wiener models , 2003, Autom..

[2]  Feng Ding,et al.  Convergence analysis of estimation algorithms for dual-rate stochastic systems , 2006, Appl. Math. Comput..

[3]  Er-Wei Bai,et al.  Decoupling the linear and nonlinear parts in Hammerstein model identification , 2004, Autom..

[4]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[5]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[6]  Feng Ding,et al.  Hierarchical least squares identification methods for multivariable systems , 2005, IEEE Trans. Autom. Control..

[7]  Feng Ding,et al.  Hierarchical gradient-based identification of multivariable discrete-time systems , 2005, Autom..

[8]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[9]  Er-Wei Bai,et al.  Identification of linear systems with hard input nonlinearities of known structure , 2002, Autom..

[10]  Feng Ding,et al.  Multi-innovation least squares identification methods based on the auxiliary model for MISO systems , 2007, Appl. Math. Comput..

[11]  Feng Ding,et al.  Gradient-Based Identification Methods for Hammerstein Nonlinear ARMAX Models , 2006 .

[12]  Vito Cerone,et al.  Parameter bounds for discrete-time Hammerstein models with bounded output errors , 2003, IEEE Trans. Autom. Control..

[13]  Er-Wei Bai A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[14]  Feng Ding,et al.  Performance bounds of forgetting factor least-squares algorithms for time-varying systems with finite measurement data , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.