Redundancy of exchangeable estimators

Exchangeable random partition processes provide a framework for statistical inference in large alphabet scenarios from a Bayesian perspective. On the other hand, the notion of the pattern of a sequence provides a framework for data compression in large alphabet scenarios. Owing to the relationship between data compression and parameter estimation, both these approaches are related. Motivated by the possibilities of cross-fertilization, we examine the redundancy of Bayes estimators (specifically those that emerge from the “Chinese restaurant processes”) in the setting of unknown discrete alphabets from a universal compression point of view. In particular, we identify relations between alphabet sizes and sample sizes where the redundancy is small- and hence, characterize useful regimes for these estimators.

[1]  Alon Orlitsky,et al.  Tight Bounds on Profile Redundancy and Distinguishability , 2012, NIPS.

[2]  Emin Orhan Dirichlet Processes , 2012 .

[3]  Sanjeev R. Kulkarni,et al.  Probability Estimation in the Rare-Events Regime , 2011, IEEE Transactions on Information Theory.

[4]  Mokshay M. Madiman,et al.  Patterns and exchangeability , 2010, 2010 IEEE International Symposium on Information Theory.

[5]  Paul Lelorier,et al.  Predicting the unpredictable. , 2010, Heart rhythm.

[6]  A. D. Morgan,et al.  An Essay on Probabilities, and Their Application to Life Contingencies and Insurance Offices , 2009 .

[7]  Boris Ryabko,et al.  Compression-based methods for nonparametric density estimation, on-line prediction, regression and classification for time series , 2007, 2008 IEEE Information Theory Workshop.

[8]  B. Ryabko Compression-based methods for nonparametric on-line prediction , regression , classification and density estimation of time series ∗ , 2008 .

[9]  Sanjeev R. Kulkarni,et al.  Strong Consistency of the Good-Turing Estimator , 2006, 2006 IEEE International Symposium on Information Theory.

[10]  Alon Orlitsky,et al.  Limit results on pattern entropy , 2004, IEEE Transactions on Information Theory.

[11]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[12]  S. Zabell Symmetry and Its Discontents: The Continuum of Inductive Methods Revisited , 2005 .

[13]  S. Zabell Symmetry and its discontents : essays on the history of inductive probability , 2005 .

[14]  Yishay Mansour,et al.  Concentration Bounds for Unigrams Language Model , 2005, COLT.

[15]  Alon Orlitsky,et al.  On Modeling Profiles Instead of Values , 2004, UAI.

[16]  Alon Orlitsky,et al.  Universal compression of memoryless sources over unknown alphabets , 2004, IEEE Transactions on Information Theory.

[17]  Alon Orlitsky,et al.  Always Good Turing: Asymptotically Optimal Probability Estimation , 2003, Science.

[18]  D. Pfeffermann,et al.  Small area estimation , 2011 .

[19]  David A. McAllester,et al.  On the Convergence Rate of Good-Turing Estimators , 2000, COLT.

[20]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[21]  J. Earman,et al.  The Cosmos of Science: Essays of Exploration , 1997 .

[22]  J. Pitman Random discrete distributions invariant under size-biased permutation , 1996, Advances in Applied Probability.

[23]  J. Pitman Exchangeable and partially exchangeable random partitions , 1995 .

[24]  A. Barron,et al.  Jeffreys' prior is asymptotically least favorable under entropy risk , 1994 .

[25]  Arthur Nádas Good, Jekinek, Mercer, and Robbins on Turing's Estimate of Probabilities , 1991 .

[26]  Andrew R. Barron,et al.  Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.

[27]  D. Aldous Exchangeability and related topics , 1985 .

[28]  J. Kingman,et al.  Mathematics of genetic diversity , 1982 .

[29]  Alberto Leon-Garcia,et al.  A source matching approach to finding minimax codes , 1980, IEEE Trans. Inf. Theory.

[30]  T. Rolski On random discrete distributions , 1980 .

[31]  David A. Freedman,et al.  De Finetti's generalizations of exchangeability , 1980 .

[32]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[33]  J. Kingman The Representation of Partition Structures , 1978 .

[34]  J. Kingman Random partitions in population genetics , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  J. Kingman Random partitions in population genetics , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[36]  G. A. Watterson The sampling theory of selectively neutral alleles , 1974, Advances in Applied Probability.

[37]  P. Teller Studies in Inductive Logic and Probability , 1974 .

[38]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[39]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[40]  W. Ewens The sampling theory of selectively neutral alleles. , 1972, Theoretical population biology.

[41]  J. McGregor,et al.  Addendum to a paper of W. Ewens. , 1972, Theoretical population biology.

[42]  Richard C. Jeffrey,et al.  Studies in inductive logic and probability , 1971 .

[43]  I. Good THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS , 1953 .

[44]  A. R. Davidson Theory of Probabilities. , 1953 .

[45]  A E Bostwick,et al.  THE THEORY OF PROBABILITIES. , 1896, Science.