Discrete uniform and binomial distributions with infinite support

We study properties of two probability distributions defined on the infinite set $$\{0,1,2, \ldots \}$$ and generalizing the ordinary discrete uniform and binomial distributions. Both extensions use the grossone-model of infinity. The first of the two distributions we study is uniform and assigns masses $$1/\textcircled {1}$$ to all points in the set $$ \{0,1,\ldots ,\textcircled {1}-1\}$$ , where $$\textcircled {1}$$ denotes the grossone. For this distribution, we study the problem of decomposing a random variable $$\xi $$ with this distribution as a sum $$\xi {\mathop {=}\limits ^\mathrm{d}} \xi _1 + \cdots + \xi _m$$ , where $$\xi _1 , \ldots , \xi _m$$ are independent non-degenerate random variables. Then, we develop an approximation for the probability mass function of the binomial distribution Bin $$(\textcircled {1},p)$$ with $$p=c/\textcircled {1}^{\alpha }$$ with $$1/2<\alpha \le 1$$ . The accuracy of this approximation is assessed using a numerical study.

[1]  L. Brown,et al.  Interval Estimation for a Binomial Proportion , 2001 .

[2]  W. D. Warde,et al.  Infinite Divisibility of Discrete Distributions, II , 1971 .

[3]  N. Balakrishnan,et al.  A Primer on Statistical Distributions , 2003 .

[4]  E. Hille,et al.  A problem in "Factorisatio Numerorum" , 1936 .

[5]  Adrian E. Raftery,et al.  Inference for the binomial N parameter: A hierarchical Bayes approach , 1988 .

[6]  A. Zhigljavsky,et al.  Deconvolution of a discrete uniform distribution , 2016 .

[7]  Yaroslav D. Sergeyev,et al.  Independence of the Grossone-Based Infinity Methodology from Non-standard Analysis and Comments upon Logical Fallacies in Some Texts Asserting the Opposite , 2018, Foundations of Science.

[8]  J. L. Hodges,et al.  The Poisson Approximation to the Poisson Binomial Distribution , 1960 .

[9]  J. Wellner,et al.  Bounding distributional errors via density ratios , 2019, Bernoulli.

[10]  On Ch. Jordan's Series for Probability , 1931 .

[11]  V. V. Petrov Limit Theorems of Probability Theory: Sequences of Independent Random Variables , 1995 .

[12]  A. C. Berry The accuracy of the Gaussian approximation to the sum of independent variates , 1941 .

[13]  Jonathan Gillard,et al.  Weighted norms in subspace-based methods for time series analysis , 2016, Numer. Linear Algebra Appl..

[14]  Sven Ove Hansson,et al.  Revising Probabilities and Full Beliefs , 2020, J. Philos. Log..

[15]  Yaroslav D. Sergeyev,et al.  Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains , 2009, 1203.4140.

[16]  A. Barbour,et al.  Poisson Approximation , 1992 .

[17]  Benny Chor,et al.  On the number of ordered factorizations of natural numbers , 2000, Discret. Math..

[18]  Cristian S. Calude,et al.  Infinitesimal Probabilities Based on Grossone , 2019, SN Computer Science.

[19]  Anatoly Zhigljavsky,et al.  Blind deconvolution of covariance matrix inverses for autoregressive processes , 2019, Linear Algebra and its Applications.

[20]  Anatoly A. Zhigljavsky,et al.  Computing sums of conditionally convergent and divergent series using the concept of grossone , 2012, Appl. Math. Comput..

[21]  Vieri Benci,et al.  Infinitesimal Probabilities* , 2016, The British Journal for the Philosophy of Science.

[22]  Davide Rizza,et al.  A Study of Mathematical Determination through Bertrand’s Paradox , 2018 .

[23]  Yaroslav D. Sergeyev,et al.  On accuracy of mathematical languages used to deal with the Riemann zeta function and the Dirichlet eta function , 2011, 1203.4142.

[24]  Gabriele Lolli,et al.  Metamathematical investigations on the theory of Grossone , 2015, Appl. Math. Comput..

[25]  Yaroslav D. Sergeyev,et al.  Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems , 2017 .

[26]  Gabriele Lolli,et al.  Infinitesimals and infinites in the history of mathematics: A brief survey , 2012, Appl. Math. Comput..