Modelling of elastic modulus of CaZrO3-MgO composites using isotropic elastic and anisotropic models

[1]  C. Baudín,et al.  Modelling of elastic modulus of a biphasic ceramic microstructure using 3D representative volume elements , 2020 .

[2]  Jingfeng Li,et al.  Defect suppression in CaZrO3‐modified (K, Na)NbO3‐based lead‐free piezoceramic by sintering atmosphere control , 2018 .

[3]  R. Quey,et al.  Optimal polyhedral description of 3D polycrystals: Method and application to statistical and synchrotron X-ray diffraction data , 2018 .

[4]  C. Baudín,et al.  Young’s modulus and hardness of multiphase CaZrO3-MgO ceramics by micro and nanoindentation , 2017 .

[5]  J. Rödel,et al.  Electromechanical properties of CaZrO3 modified (K,Na)NbO3‐based lead‐free piezoceramics under uniaxial stress conditions , 2017 .

[6]  C. Baudín,et al.  Influence of phase composition on the sliding wear of composites in the system CaZrO3–MgO–ZrO2 against ZrO2 and steel , 2016 .

[7]  C. Baudín,et al.  CaZrO3–MgO structural ceramics obtained by reaction sintering of dolomite-zirconia mixtures , 2016 .

[8]  Cormac Toher,et al.  Charting the complete elastic properties of inorganic crystalline compounds , 2015, Scientific Data.

[9]  J. Zhai,et al.  Effect of CaZrO3 on phase structure and electrical properties of KNN-based lead-free ceramics , 2015 .

[10]  J. Hubálková,et al.  Fused calcium zirconate for refractory applications , 2013 .

[11]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[12]  Hyoung-Su Han,et al.  Strain enhancement in lead-free Bi0.5(Na0.78K0.22)0.5TiO3 ceramics by CaZrO3 substitution , 2013 .

[13]  I. Reaney,et al.  Electromechanical strain in Bi(Zn1/2Ti1/2)O3–(Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 solid solutions , 2012 .

[14]  M. Sainz,et al.  The system Clinker–MgO–CaZrO3 and its application to the corrosion behavior of CaZrO3/MgO refractory matrix by clinker , 2009 .

[15]  S. Solomon,et al.  Synthesis, characterization and microwave dielectric properties of nanocrystalline CaZrO3 ceramics , 2008 .

[16]  C. Baudín,et al.  Assessment of natural and synthetic wollastonite as source for bioceramics preparation. , 2007, Journal of biomedical materials research. Part A.

[17]  Hans-Åke Häggblad,et al.  Tensile strength and fracture energy of pressed metal powder by diametral compression test , 2007 .

[18]  S. Aza,et al.  Thermodynamic assessment of the system ZrO2-CaO-MgO using new experimental results: Calculation of the isoplethal section MgO.CaO-ZrO2 , 2005 .

[19]  Peter E. D. Morgan,et al.  New Uniformly Porous CaZrO3/MgO Composites with Three‐Dimensional Network Structure from Natural Dolomite , 2004 .

[20]  Martin J Tyas,et al.  Analysis of tensile bond strengths using Weibull statistics. , 2004, Biomaterials.

[21]  O. Anderson,et al.  Measured elastic moduli of single-crystal MgO up to 1800 K , 1989 .

[22]  Brian R. Lawn,et al.  A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I , 1981 .

[23]  G. Grabowski Modelling of thermal expansion of single- and two-phase ceramic polycrystals utilising synthetic 3D microstructures , 2019, Computational Materials Science.

[24]  C. Baudín,et al.  Sliding wear of CaZrO3-MgO composites against ZrO2 and steel , 2017 .

[25]  Tobias Malte Müller,et al.  3D modelling of ceramic composites and simulation of their electrical, thermal and elastic properties , 2014 .

[26]  P. Pena,et al.  The Mechanism of corrosion of MgO CaZrO3-calcium silicate materials by cement clinker , 2007 .

[27]  M. D. Mathews,et al.  High-temperature X-ray diffractometric studies of CaZrO3, SrZrO3 and BaZrO3 , 1991 .