Information transfer and recovery for the sense of touch

Transformation of postsynaptic potentials (PSPs) into action potentials (APs) is the rate-limiting step of communication in neural networks. The efficiency of this intracellular information transfer also powerfully shapes stimulus representations in sensory cortices. Using whole-cell recordings and information-theoretic measures, we show herein that somatic PSPs accurately represent stimulus location on a trial-by-trial basis in single neurons even 4 synapses away from the sensory periphery in the whisker system. This information is largely lost during AP generation but can be rapidly (<20 ms) recovered using complementary information in local populations in a cell-type-specific manner. These results show that as sensory information is transferred from one neural locus to another, the circuits reconstruct the stimulus with high fidelity so that sensory representations of single neurons faithfully represent the stimulus in the periphery, but only in their PSPs, resulting in lossless information processing for the sense of touch in the primary somatosensory cortex.

[1]  R. Johansson,et al.  First spikes in ensembles of human tactile afferents code complex spatial fingertip events , 2004, Nature Neuroscience.

[2]  M. Whittington,et al.  A Novel Network of Multipolar Bursting Interneurons Generates Theta Frequency Oscillations in Neocortex , 2003, Neuron.

[3]  Surya Ganguli,et al.  On simplicity and complexity in the brave new world of large-scale neuroscience , 2015, Current Opinion in Neurobiology.

[4]  T. Celikel,et al.  Neural coding: A single neuron’s perspective , 2018, Neuroscience & Biobehavioral Reviews.

[5]  W. Gerstner,et al.  Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. , 2012, Journal of neurophysiology.

[6]  Andrew S. Johnson,et al.  Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex , 2015, Cerebral cortex.

[7]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[8]  Chao Huang,et al.  Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding , 2016, PLoS Comput. Biol..

[9]  A. Thomson,et al.  Functional Maps of Neocortical Local Circuitry , 2007, Front. Neurosci..

[10]  A. Zador,et al.  Neural representation and the cortical code. , 2000, Annual review of neuroscience.

[11]  Surya Ganguli,et al.  Inferring hidden structure in multilayered neural circuits , 2017, bioRxiv.

[12]  David L. Sheinberg,et al.  Spike Count Reliability and the Poisson Hypothesis , 2006, The Journal of Neuroscience.

[13]  Chao Huang,et al.  Spontaneous oscillations in intrinsic signals reveal the structure of cerebral vasculature. , 2013, Journal of neurophysiology.

[14]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[15]  M. London,et al.  Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex , 2010, Nature.

[16]  Paul H. E. Tiesinga,et al.  A Developmental Switch for Hebbian Plasticity , 2015, PLoS Comput. Biol..

[17]  William Bialek,et al.  Entropy and information in neural spike trains: progress on the sampling problem. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Michael J. Berry,et al.  High Accuracy Decoding of Dynamical Motion from a Large Retinal Population , 2014, PLoS Comput. Biol..

[19]  D. Chklovskii,et al.  Maps in the brain: what can we learn from them? , 2004, Annual review of neuroscience.

[20]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[21]  Stefano Panzeri,et al.  Analytical estimates of limited sampling biases in different information measures. , 1996, Network.

[22]  Stefano Panzeri,et al.  Information-theoretic methods for studying population codes , 2010, Neural Networks.

[23]  Sophie Denève,et al.  Bayesian Spiking Neurons I: Inference , 2008, Neural Computation.

[24]  Fleur Zeldenrust,et al.  The tuning of tuning: How adaptation influences single cell information transfer , 2020, bioRxiv.

[25]  M. Diamond,et al.  The Role of Spike Timing in the Coding of Stimulus Location in Rat Somatosensory Cortex , 2001, Neuron.

[26]  R. Angus Silver,et al.  Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding , 2014, Neuron.

[27]  Tiago Branco,et al.  Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits , 2015, eLife.

[28]  Diego Contreras,et al.  Synaptic Responses to Whisker Deflections in Rat Barrel Cortex as a Function of Cortical Layer and Stimulus Intensity , 2004, The Journal of Neuroscience.

[29]  Moritz Helmstaedter,et al.  Efficient Recruitment of Layer 2/3 Interneurons by Layer 4 Input in Single Columns of Rat Somatosensory Cortex , 2008, The Journal of Neuroscience.

[30]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[31]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[32]  J. Lübke,et al.  Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats , 2006, The Journal of physiology.

[33]  Christian L. Müller,et al.  Sparse and Compositionally Robust Inference of Microbial Ecological Networks , 2014, PLoS Comput. Biol..

[34]  Daniela Popa,et al.  Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements , 2014, Nature Neuroscience.

[35]  V. Parmon,et al.  Entropy and Information , 2009 .

[36]  B. Sakmann,et al.  In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain , 2002, Pflügers Archiv.

[37]  M. Diamond,et al.  Neuronal Encoding of Texture in the Whisker Sensory Pathway , 2005, PLoS biology.

[38]  Robin A. A. Ince,et al.  Neural Codes Formed by Small and Temporally Precise Populations in Auditory Cortex , 2013, The Journal of Neuroscience.

[39]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[40]  Francesca Mastrogiuseppe,et al.  Linking connectivity, dynamics and computations in recurrent neural networks , 2017 .

[41]  E I Knudsen,et al.  Computational maps in the brain. , 1987, Annual review of neuroscience.

[42]  M. Diamond,et al.  Population Coding of Stimulus Location in Rat Somatosensory Cortex , 2001, Neuron.

[43]  J. Poulet,et al.  Synaptic Mechanisms Underlying Sparse Coding of Active Touch , 2011, Neuron.

[44]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[45]  Nicolas Brunel,et al.  Sensory neural codes using multiplexed temporal scales , 2010, Trends in Neurosciences.

[46]  Carl C. H. Petersen,et al.  Sensorimotor processing in the rodent barrel cortex , 2019, Nature Reviews Neuroscience.

[47]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[48]  N. Logothetis,et al.  Millisecond encoding precision of auditory cortex neurons , 2010, Proceedings of the National Academy of Sciences.

[49]  Ingo Bojak,et al.  A gradual depth-dependent change in connectivity features of supragranular pyramidal cells in rat barrel cortex , 2014, Brain Structure and Function.

[50]  Robert M. Gray,et al.  Entropy and Information , 1990 .

[51]  R. Quiroga,et al.  Extracting information from neuronal populations : information theory and decoding approaches , 2022 .

[52]  Alison L. Barth,et al.  Ongoing in Vivo Experience Triggers Synaptic Metaplasticity in the Neocortex , 2008, Science.

[53]  Jonathan D Victor,et al.  Approaches to Information-Theoretic Analysis of Neural Activity , 2006, Biological theory.

[54]  Stefano Panzeri,et al.  Open Source Tools for the Information Theoretic Analysis of Neural Data , 2009, Frontiers in neuroscience.

[55]  Alexandre Pouget,et al.  Basis Functions for Object-Centered Representations , 2003, Neuron.

[56]  J. Poulet,et al.  Synaptic Mechanisms Underlying Sparse Coding of Active Touch , 2011, Neuron.

[57]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[58]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[59]  Nikos K Logothetis,et al.  A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings , 2009, BMC Neuroscience.

[60]  M. Brecht,et al.  Behavioural report of single neuron stimulation in somatosensory cortex , 2008, Nature.

[61]  Maik C. Stüttgen,et al.  Integration of Vibrotactile Signals for Whisker-Related Perception in Rats Is Governed by Short Time Constants: Comparison of Neurometric and Psychometric Detection Performance , 2010, The Journal of Neuroscience.

[62]  Jon H Kaas,et al.  Topographic Maps are Fundamental to Sensory Processing , 1997, Brain Research Bulletin.

[63]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[64]  D. Feldman,et al.  Long-term depression induced by sensory deprivation during cortical map plasticity in vivo , 2003, Nature Neuroscience.

[65]  Metaplasticity in the Neocortex Ongoing in Vivo Experience Triggers Synaptic , 2008 .

[66]  Alison L. Barth,et al.  Experimental evidence for sparse firing in the neocortex , 2012, Trends in Neurosciences.

[67]  Francesca Mastrogiuseppe,et al.  Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent Neural Networks , 2017, Neuron.

[68]  M. Brecht,et al.  Spiking Irregularity and Frequency Modulate the Behavioral Report of Single-Neuron Stimulation , 2014, Neuron.

[69]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[70]  William Bialek,et al.  Reliability and information transmission in spiking neurons , 1992, Trends in Neurosciences.

[71]  Stefano Panzeri,et al.  Analysis of Slow (Theta) Oscillations as a Potential Temporal Reference Frame for Information Coding in Sensory Cortices , 2012, PLoS Comput. Biol..

[72]  K. Svoboda,et al.  A Cellular Resolution Map of Barrel Cortex Activity during Tactile Behavior , 2015, Neuron.

[73]  Zengcai V. Guo,et al.  A motor cortex circuit for motor planning and movement , 2015, Nature.

[74]  Maria Blatow,et al.  Two calretinin-positive GABAergic cell types in layer 2/3 of the mouse neocortex provide different forms of inhibition. , 2009, Cerebral cortex.

[75]  Stefano Panzeri,et al.  Sensory Input Drives Multiple Intracellular Information Streams in Somatosensory Cortex , 2010, The Journal of Neuroscience.

[76]  C. Petersen,et al.  Correlating whisker behavior with membrane potential in barrel cortex of awake mice , 2006, Nature Neuroscience.

[77]  Balaji Sriram,et al.  A Sparse Probabilistic Code Underlies the Limits of Behavioral Discrimination , 2019, Cerebral cortex.

[78]  P. Dayan,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 References the Asynchronous State in Cortical Circuits , 2022 .

[79]  J. Lübke,et al.  Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. , 2003, Cerebral cortex.

[80]  K. Harris,et al.  Cortical connectivity and sensory coding , 2013, Nature.

[81]  Romain Brette,et al.  Philosophy of the Spike: Rate-Based vs. Spike-Based Theories of the Brain , 2015, Front. Syst. Neurosci..

[82]  M. Diamond,et al.  Population coding in somatosensory cortex , 2002, Current Opinion in Neurobiology.

[83]  Bert Sakmann,et al.  Sensory integration across space and in time for decision making in the somatosensory system of rodents , 2007, Proceedings of the National Academy of Sciences.

[84]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[85]  A. Litwin-Kumar,et al.  Slow dynamics and high variability in balanced cortical networks with clustered connections , 2012, Nature Neuroscience.

[86]  D. Feldman,et al.  Modulation of spike timing by sensory deprivation during induction of cortical map plasticity , 2004, Nature Neuroscience.

[87]  M. Häusser,et al.  How many neurons are sufficient for perception of cortical activity? , 2020, eLife.

[88]  Rava Azeredo da Silveira,et al.  Structures of Neural Correlation and How They Favor Coding , 2016, Neuron.

[89]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[90]  Fleur Zeldenrust,et al.  Cortical Representation of Touch in Silico , 2020, bioRxiv.

[91]  M E Diamond,et al.  Learning through maps: functional significance of topographic organization in primary sensory cortex. , 1999, Journal of neurobiology.

[92]  Christian K. Machens,et al.  Efficient codes and balanced networks , 2016, Nature Neuroscience.

[93]  B. Sakmann,et al.  Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex , 2004, Nature.

[94]  B. Sakmann,et al.  Unsupervised whisker tracking in unrestrained behaving animals. , 2008, Journal of neurophysiology.

[95]  D. Herman,et al.  Tactile object localization by anticipatory whisker motion. , 2015, Journal of neurophysiology.

[96]  B. Connors,et al.  Sensory deprivation without competition yields modest alterations of short-term synaptic dynamics. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Stefano Panzeri,et al.  Information Carried by Population Spike Times in the Whisker Sensory Cortex can be Decoded Without Knowledge of Stimulus Time , 2010, Front. Syn. Neurosci..

[98]  P. Tiesinga,et al.  Cellular diversity of the somatosensory cortical map plasticity , 2017, bioRxiv.

[99]  P. Tiesinga,et al.  Cellular diversity of the somatosensory cortical map plasticity , 2017, Neuroscience & Biobehavioral Reviews.

[100]  Asohan Amarasingham,et al.  Conditional modeling and the jitter method of spike resampling. , 2012, Journal of neurophysiology.