A Self-Organizing Model of the Visual Development of Hand-Centred Representations

We show how hand-centred visual representations could develop in the primate posterior parietal and premotor cortices during visually guided learning in a self-organizing neural network model. The model incorporates trace learning in the feed-forward synaptic connections between successive neuronal layers. Trace learning encourages neurons to learn to respond to input images that tend to occur close together in time. We assume that sequences of eye movements are performed around individual scenes containing a fixed hand-object configuration. Trace learning will then encourage individual cells to learn to respond to particular hand-object configurations across different retinal locations. The plausibility of this hypothesis is demonstrated in computer simulations.

[1]  David C. Knill,et al.  Humans use continuous visual feedback from the hand to control both the direction and distance of pointing movements , 2005, Experimental Brain Research.

[2]  Edmund T. Rolls,et al.  The relative advantages of sparse versus distributed encoding for associative neuronal networks in the brain , 1990 .

[3]  Stefano Panzeri,et al.  Information in the Neuronal Representation of Individual Stimuli in the Primate Temporal Visual Cortex , 1997, Journal of Computational Neuroscience.

[4]  R. Andersen,et al.  The parietal reach region codes the next planned movement in a sequential reach task. , 2001, Journal of neurophysiology.

[5]  D. Wolpert,et al.  When Feeling Is More Important Than Seeing in Sensorimotor Adaptation , 2002, Current Biology.

[6]  Anne C. Sittig,et al.  The precision of proprioceptive position sense , 1998, Experimental Brain Research.

[7]  Byron M. Yu,et al.  Reference frames for reach planning in macaque dorsal premotor cortex. , 2007, Journal of neurophysiology.

[8]  Richard A. Andersen,et al.  Coding of the Reach Vector in Parietal Area 5d , 2012, Neuron.

[9]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. II. Spatial properties. , 1991, Journal of neurophysiology.

[10]  Edmund T. Rolls,et al.  Position invariant recognition in the visual system with cluttered environments , 2000, Neural Networks.

[11]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[12]  Michael I. Jordan,et al.  Viewing the hand prior to movement improves accuracy of pointing performed toward the unseen contralateral hand , 1997, Experimental Brain Research.

[13]  C. Prablanc,et al.  Vectorial coding of movement: vision, proprioception, or both? , 1995, Journal of neurophysiology.

[14]  Gunnar Blohm,et al.  Decoding the cortical transformations for visually guided reaching in 3D space. , 2009, Cerebral cortex.

[15]  N. Holmes,et al.  Keeping the world at hand: rapid visuomotor processing for hand–object interactions , 2012, Experimental Brain Research.

[16]  S. Royer,et al.  Conservation of total synaptic weight through balanced synaptic depression and potentiation , 2003, Nature.

[17]  Edmund T. Rolls,et al.  Invariant Global Motion Recognition in the Dorsal Visual System: A Unifying Theory , 2007, Neural Computation.

[18]  R. Andersen,et al.  The posterior parietal cortex: Sensorimotor interface for the planning and online control of visually guided movements , 2006, Neuropsychologia.

[19]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.

[20]  Lawrence H Snyder,et al.  Idiosyncratic and systematic aspects of spatial representations in the macaque parietal cortex , 2010, Proceedings of the National Academy of Sciences.

[21]  C. Galletti,et al.  The cortical connections of area V6: an occipito‐parietal network processing visual information , 2001, The European journal of neuroscience.

[22]  E. Rolls,et al.  Neural networks and brain function , 1998 .

[23]  C. Galletti,et al.  Reaching Activity in the Medial Posterior Parietal Cortex of Monkeys Is Modulated by Visual Feedback , 2010, The Journal of Neuroscience.

[24]  Philip N. Sabes,et al.  Multisensory Integration during Motor Planning , 2003, The Journal of Neuroscience.

[25]  R. Andersen,et al.  Dorsal Premotor Neurons Encode the Relative Position of the Hand, Eye, and Goal during Reach Planning , 2006, Neuron.

[26]  J. F. Soechting,et al.  Early stages in a sensorimotor transformation , 1992, Behavioral and Brain Sciences.

[27]  Paul B. Johnson,et al.  Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. , 1997, Annual review of neuroscience.

[28]  Edmund T. Rolls,et al.  A Model of Invariant Object Recognition in the Visual System: Learning Rules, Activation Functions, Lateral Inhibition, and Information-Based Performance Measures , 2000, Neural Computation.

[29]  E T Rolls,et al.  Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[30]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[31]  M S Graziano,et al.  Coding the location of the arm by sight. , 2000, Science.

[32]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[33]  J. Crawford,et al.  Fields of Gain in the Brain , 2009, Neuron.

[34]  Jonathan D. Nelson,et al.  Multiple Parietal Reach Regions in Humans: Cortical Representations for Visual and Proprioceptive Feedback during On-Line Reaching , 2009, The Journal of Neuroscience.

[35]  Richard A Andersen,et al.  Integration of target and hand position signals in the posterior parietal cortex: effects of workspace and hand vision. , 2012, Journal of neurophysiology.

[36]  Philip N. Sabes,et al.  Flexible strategies for sensory integration during motor planning , 2005, Nature Neuroscience.

[37]  C. Galletti,et al.  Functional Demarcation of a Border Between Areas V6 and V6A in the Superior Parietal Gyrus of the Macaque Monkey , 1996, The European journal of neuroscience.

[38]  Nicholas P. Holmes,et al.  Visual bias of unseen hand position with a mirror: spatial and temporal factors , 2005, Experimental Brain Research.

[39]  H. Ehrsson,et al.  That's Near My Hand! Parietal and Premotor Coding of Hand-Centered Space Contributes to Localization and Self-Attribution of the Hand , 2012, Journal of Neuroscience.

[40]  Steve W. C. Chang,et al.  Using a Compound Gain Field to Compute a Reach Plan , 2009, Neuron.

[41]  M. Graziano Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Werner Graf,et al.  Proprioceptive pathways to posterior parietal areas MIP and LIPv from the dorsal column nuclei and the postcentral somatosensory cortex , 2011, The European journal of neuroscience.

[43]  E. Rolls,et al.  INVARIANT FACE AND OBJECT RECOGNITION IN THE VISUAL SYSTEM , 1997, Progress in Neurobiology.

[44]  Paul B. Johnson,et al.  The sources of visual information to the primate frontal lobe: a novel role for the superior parietal lobule. , 1996, Cerebral cortex.

[45]  R. Andersen,et al.  Intention-related activity in the posterior parietal cortex: a review , 2000, Vision Research.

[46]  A. Treves,et al.  The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex , 1997, Experimental Brain Research.

[47]  T. Sejnowski,et al.  Spatial Transformations in the Parietal Cortex Using Basis Functions , 1997, Journal of Cognitive Neuroscience.

[48]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. , 1991, Journal of neurophysiology.

[49]  E T Rolls,et al.  Invariant object recognition in the visual system with error correction and temporal difference learning , 2001, Network.

[50]  C. Gross,et al.  Visuospatial properties of ventral premotor cortex. , 1997, Journal of neurophysiology.

[51]  Robert L Sainburg,et al.  The roles of vision and proprioception in the planning of reaching movements. , 2009, Advances in experimental medicine and biology.

[52]  A P Batista,et al.  Reach plans in eye-centered coordinates. , 1999, Science.

[53]  R. M. Siegel,et al.  Neurons of area 7 activated by both visual stimuli and oculomotor behavior , 2004, Experimental Brain Research.

[54]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[55]  Christopher A. Buneo,et al.  Direct visuomotor transformations for reaching , 2002, Nature.

[56]  H. Sakata,et al.  Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. , 1973, Brain research.

[57]  J. Saunders,et al.  Humans use continuous visual feedback from the hand to control fast reaching movements , 2003, Experimental Brain Research.