Channels in Vision: Basic Aspects

Kenneth J.W. Craik (1914–1945), while discussing how the human visual system recognized objects, wrote: Now in mathematics it is legitimate to seek transformations through which certain quantities (such as the physical laws of nature and the velocity of light in relativity theory) remain invariant. In fact, the action of various physical devices which “recognize” or respond identically to certain simple objects can be treated in terms of such transformations. Thus the essential part of physical “recognizing” instruments is usually a filter—whether it be a mechanical sieve, an optical filter, or a tuned electrical circuit —which “passes” only quantities of the kind it is required to identify and rejects all others. Mathematically, the situation here is that, in a perfect filter, the transformation leaves the desired quantity unaltered, but reduces all others to zero.

[1]  Thomas Young,et al.  II. The Bakerian Lecture. On the theory of light and colours , 1802, Philosophical Transactions of the Royal Society of London.

[2]  M. Vernon The perception of inclined lines. , 1934 .

[3]  J. Gibson,et al.  Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies , 1937 .

[4]  H. K. Hartline,et al.  THE RESPONSE OF SINGLE OPTIC NERVE FIBERS OF THE VERTEBRATE EYE TO ILLUMINATION OF THE RETINA , 1938 .

[5]  W. C. Prentice,et al.  Visual 'normalization' near the vertical and horizontal. , 1950, Journal of experimental psychology.

[6]  J. A. Long Review of Annual Review of Psychology. , 1951 .

[7]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[8]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[9]  O. Schade Optical and photoelectric analog of the eye. , 1956, Journal of the Optical Society of America.

[10]  Vivian O'Brien,et al.  Contour Perception, Illusion and Reality* , 1958 .

[11]  W. Stiles COLOR VISION: THE APPROACH THROUGH INCREMENT-THRESHOLD SENSITIVITY. , 1959 .

[12]  W. Pitts,et al.  Anatomy and Physiology of Vision in the Frog (Rana pipiens) , 1960, The Journal of general physiology.

[13]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[14]  L. Kaufman ON THE NATURE OF BINOCULAR DISPARITY. , 1964, The American journal of psychology.

[15]  J. R. Harris,et al.  TWO DIFFERENT AFTER-EFFECTS OF EXPOSURE TO VISUAL TILTS. , 1965, The American journal of psychology.

[16]  D. Jameson,et al.  Mach bands : quantitative studies on neural networks in the retina , 1966 .

[17]  John Merchant Sampling theory for the human visual sense. , 1965 .

[18]  L. Kaufman SOME NEW STEREOSCOPIC PHENOMENA AND THEIR IMPLICATIONS FOR THE THEORY OF STEREOPSIS. , 1965, The American journal of psychology.

[19]  D. P. Andrews Perception of Contours in the Central Fovea , 1965, Nature.

[20]  M. Kabrisky A Proposed Model for Visual Information Processing in the Human Brain , 1964 .

[21]  F. Campbell,et al.  Orientational selectivity of the human visual system , 1966, The Journal of physiology.

[22]  K. Craik The nature of psychology , 1966 .

[23]  J. Robson Spatial and Temporal Contrast-Sensitivity Functions of the Visual System , 1966 .

[24]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[25]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[26]  M. A. Bouman,et al.  Spatiotemporal modulation transfer in the human eye. , 1967, Journal of the Optical Society of America.

[27]  Thomas Young,et al.  On the theory of light and colours , 1967 .

[28]  G. F. Cooper,et al.  The angular selectivity of visual cortical cells to moving gratings , 1968, The Journal of physiology.

[29]  A. S. Gilinsky Orientation-specific effects of patterns of adapting light on visual acuity. , 1968, Journal of the Optical Society of America.

[30]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[31]  A Pantle,et al.  Size-Detecting Mechanisms in Human Vision , 1968, Science.

[32]  O. Braddick Binocular fusion and perceptual analysis , 1968 .

[33]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[34]  J. P. Thomas,et al.  Inhibitory effect of less intense stimuli upon the increment threshold for a narrow test line. , 1968, Vision research.

[35]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[36]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[37]  C. Blakemore,et al.  Size Adaptation: A New Aftereffect , 1969, Science.

[38]  G. K. Wallace The critical distance of interaction in the Zöllner illusion , 1969 .

[39]  J. Thomas Model of the function of receptive fields in human vision. , 1970, Psychological review.

[40]  M Kabrisky,et al.  A theory of pattern perception based on human physiology. , 1970, Ergonomics.

[41]  C. Blakemore,et al.  The perceived spatial frequency shift: evidence for frequency‐selective neurones in the human brain , 1970, The Journal of physiology.

[42]  C. Blakemore,et al.  Lateral Inhibition between Orientation Detectors in the Human Visual System , 1970, Nature.

[43]  F. Campbell,et al.  The tilt after-effect: a fresh look. , 1971, Vision research.

[44]  J. Robson,et al.  Spatial-frequency channels in human vision. , 1971, Journal of the Optical Society of America.

[45]  J. Stone,et al.  Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. , 1971, Brain research.

[46]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[47]  C. Blakemore,et al.  The orientation specificity of two visual after‐effects , 1971, The Journal of physiology.

[48]  A. Ginsburg Psychological Correlates of a Model of the Human Visual System , 1971 .

[49]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[50]  G. Henning,et al.  The detection of gratings in narrow‐band visual noise * , 1971, The Journal of physiology.

[51]  L. D. Harmon Some Aspects of Recognition of Human Faces , 1971 .

[52]  J. R. Lee,et al.  How Does the Striate Cortex Begin the Reconstruction of the Visual World? , 1971, Science.

[53]  J. Stone,et al.  Conduction velocity as a parameter in the organisation of the afferent relay in the cat's lateral geniculate nucleus. , 1971, Brain research.

[54]  N. Graham,et al.  Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channels models. , 1971, Vision research.

[55]  D. M. Parker Contrast and Size Variables and the Tilt After-effect , 1972, The Quarterly journal of experimental psychology.

[56]  D. Tolhurst Adaptation to square‐wave gratings: inhibition between spatial frequency channels in the human visual system , 1972, The Journal of physiology.

[57]  U. T. Keesey Flicker and pattern detection: a comparison of thresholds. , 1972, Journal of the Optical Society of America.

[58]  D. Tolhurst On the possible existence of edge detector neurones in the human visual system , 1972 .

[59]  J. Atkinson Visibility of an afterimage in the presence of a second afterimage , 1972 .

[60]  B. Julesz,et al.  Spatial-frequency masking in vision: critical bands and spread of masking. , 1972, Journal of the Optical Society of America.

[61]  N. Graham Spatial frequency channels in the human visual system: effects of luminance and pattern drift rate. , 1972, Vision research.

[62]  Joseph W. Carl,et al.  The Application of Filtered Transforms to the General Classification Problem , 1972, IEEE Transactions on Computers.

[63]  J. Kulikowski,et al.  Spatial arrangement of line, edge and grating detectors revealed by subthreshold summation. , 1973, Vision research.

[64]  F. Campbell,et al.  The Dependence of Monocular Rivalry on Orientation , 1973 .

[65]  D. Tolhurst Separate channels for the analysis of the shape and the movement of a moving visual stimulus , 1973, The Journal of physiology.

[66]  C. Blakemore,et al.  Orientation Specificity and Spatial Selectivity in Human Vision , 1973, Perception.

[67]  C. Stromeyer,et al.  Spatial frequency phase effects in human vision. , 1973, Vision research.

[68]  J. Kulikowski,et al.  Orientational selectivity of grating and line detectors in human vision. , 1973, Vision research.

[69]  R. M. Shapley,et al.  Edge detectors in human vision , 1973, The Journal of physiology.

[70]  L. Maffei,et al.  The visual cortex as a spatial frequency analyser. , 1973, Vision research.

[71]  F. Campbell,et al.  The Dependence of Monocular Rivalry on Spatial Frequency , 1973 .

[72]  B Julesz,et al.  Masking in Visual Recognition: Effects of Two-Dimensional Filtered Noise , 1973, Science.

[73]  C. Blakemore,et al.  Stimulus specificity in the human visual system. , 1973, Vision research.

[74]  D. Tolhurst,et al.  Psychophysical evidence for sustained and transient detectors in human vision , 1973, The Journal of physiology.

[75]  F. Bagrash Size-selective adaptation: psychophysical evidence for size-tuning and the effects of stimulus contour and adapting flux. , 1973, Vision research.

[76]  F. Bagrash,et al.  Size-tuned mechanisms: correlation of data on detection and apparent size. , 1974, Vision research.

[77]  D. Tolhurst,et al.  Is spatial adaptation an after‐effect of prolonged inhibition? , 1974, The Journal of physiology.

[78]  M. Coltheart,et al.  Visual Imagery: A Case Study , 1974, The Quarterly journal of experimental psychology.

[79]  S. Klein,et al.  The simultaneous spatial frequency shift: a dissociation between the detection and perception of gratings. , 1974, Vision research.

[80]  D. Mitchell,et al.  The spatial selectivity of the tilt aftereffect. , 1974, Vision research.

[81]  John Rose,et al.  Advances in cybernetics and systems , 1974 .

[82]  F. Campbell,et al.  The effect of phase on the perception of compound gratings. , 1974, Vision research.

[83]  J. Nachmias,et al.  Discrimination of simple and complex gratings , 1975, Vision Research.

[84]  S. Klein,et al.  Evidence against narrow-band spatial frequency channels in human vision: the detectability of frequency modulated gratings , 1975, Vision Research.

[85]  Local retinal adaptation and spatial frequency channels , 1975, Vision Research.

[86]  D. Broadbent,et al.  Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency , 1975, Vision Research.

[87]  D. Tolhurst,et al.  Orientation illusions and after-effects: Inhibition between channels , 1975, Vision Research.

[88]  M. Georgeson,et al.  Contrast constancy: deblurring in human vision by spatial frequency channels. , 1975, The Journal of physiology.

[89]  F. Campbell,et al.  The Magic Number 4 ± 0: A New Look at Visual Numerosity Judgements , 1976, Perception.