A Review on Bilevel Optimization: From Classical to Evolutionary Approaches and Applications

Bilevel optimization is defined as a mathematical program, where an optimization problem contains another optimization problem as a constraint. These problems have received significant attention from the mathematical programming community. Only limited work exists on bilevel problems using evolutionary computation techniques; however, recently there has been an increasing interest due to the proliferation of practical applications and the potential of evolutionary algorithms in tackling these problems. This paper provides a comprehensive review on bilevel optimization from the basic principles to solution strategies; both classical and evolutionary. A number of potential application problems are also discussed. To offer the readers insights on the prominent developments in the field of bilevel optimization, we have performed an automated text-analysis of an extended list of papers published on bilevel optimization to date. This paper should motivate evolutionary computation researchers to pay more attention to this practical yet challenging area.

[1]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[2]  A. Copeland Review: John von Neumann and Oskar Morgenstern, Theory of games and economic behavior , 1945 .

[3]  Heinrich von Stackelberg,et al.  Stackelberg (Heinrich von) - The Theory of the Market Economy, translated from the German and with an introduction by Alan T. PEACOCK. , 1953 .

[4]  Jerome Bracken,et al.  Mathematical Programs with Optimization Problems in the Constraints , 1973, Oper. Res..

[5]  Jerome Bracken,et al.  Defense Applications of Mathematical Programs with Optimization Problems in the Constraints , 1974, Oper. Res..

[6]  John B. Kidd,et al.  Decisions with Multiple Objectives—Preferences and Value Tradeoffs , 1977 .

[7]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Eitaro Aiyoshi,et al.  HIERARCHICAL DECENTRALIZED SYSTEM AND ITS NEW SOLUTION BY A BARRIER METHOD. , 1980 .

[9]  José Fortuny-Amat,et al.  A Representation and Economic Interpretation of a Two-Level Programming Problem , 1981 .

[10]  William R. Smith,et al.  Chemical Reaction Equilibrium Analysis: Theory and Algorithms , 1982 .

[11]  Jonathan F. Bard,et al.  An explicit solution to the multi-level programming problem , 1982, Comput. Oper. Res..

[12]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[13]  E. Aiyoshi,et al.  A solution method for the static constrained Stackelberg problem via penalty method , 1984 .

[14]  Wayne F. Bialas,et al.  Two-Level Linear Programming , 1984 .

[15]  David E. Boyce,et al.  A bilevel programming algorithm for exact solution of the network design problem with user-optimal flows , 1986 .

[16]  J. Pang,et al.  Existence of optimal solutions to mathematical programs with equilibrium constraints , 1988 .

[17]  L. Lasdon,et al.  Derivative evaluation and computational experience with large bilevel mathematical programs , 1990 .

[18]  Arthur W. Westerberg,et al.  Bilevel programming for steady-state chemical process design—I. Fundamentals and algorithms , 1990 .

[19]  Jonathan F. Bard,et al.  The Mixed Integer Linear Bilevel Programming Problem , 1990, Oper. Res..

[20]  Jonathan F. Bard,et al.  A Branch and Bound Algorithm for the Bilevel Programming Problem , 1990, SIAM J. Sci. Comput..

[21]  Ue-Pyng Wen,et al.  Linear Bi-level Programming Problems — A Review , 1991 .

[22]  Jonathan F. Bard,et al.  Algorithms for nonlinear bilevel mathematical programs , 1991, IEEE Trans. Syst. Man Cybern..

[23]  Eitaro Aiyoshi,et al.  Double penalty method for bilevel optimization problems , 1992, Ann. Oper. Res..

[24]  M. Florian,et al.  ON THE GEOMETRIC STRUCTURE OF LINEAR BILEVEL PROGRAMS: A DUAL APPROACH , 1992 .

[25]  David E. Boyce,et al.  Construction of a real-world bilevel linear programming model of the highway network design problem , 1992, Ann. Oper. Res..

[26]  Panos M. Pardalos,et al.  Global optimization of concave functions subject to quadratic constraints: An application in nonlinear bilevel programming , 1992, Ann. Oper. Res..

[27]  Terry L. Friesz,et al.  Hierarchical optimization: An introduction , 1992, Ann. Oper. Res..

[28]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[29]  Patrice Marcotte,et al.  Efficient implementation of heuristics for the continuous network design problem , 1992, Ann. Oper. Res..

[30]  J. Bard,et al.  An algorithm for the discrete bilevel programming problem , 1992 .

[31]  J. Outrata Necessary optimality conditions for Stackelberg problems , 1993 .

[32]  Peter Värbrand,et al.  A global optimization approach for the linear two-level program , 1993, J. Glob. Optim..

[33]  Omar Ben-Ayed,et al.  Bilevel linear programming , 1993, Comput. Oper. Res..

[34]  A. Ackere The principal/agent paradigm: Its relevance to various functional fields , 1993 .

[35]  G. Anandalingam,et al.  A penalty function approach for solving bi-level linear programs , 1993, J. Glob. Optim..

[36]  L. N. Vicente,et al.  Discrete linear bilevel programming problem , 1996 .

[37]  F. B. Vernadat,et al.  Decisions with Multiple Objectives: Preferences and Value Tradeoffs , 1994 .

[38]  G. Anandalingam,et al.  Genetic algorithm based approach to bi-level linear programming , 1994 .

[39]  Gilles Savard,et al.  The steepest descent direction for the nonlinear bilevel programming problem , 1990, Oper. Res. Lett..

[40]  L. N. Vicente,et al.  Descent approaches for quadratic bilevel programming , 1994 .

[41]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[42]  John E. Garen,et al.  Executive Compensation and Principal-Agent Theory , 1994, Journal of Political Economy.

[43]  J. Morgan,et al.  Topological existence and stability for stackelberg problems , 1995 .

[44]  Athanasios Migdalas,et al.  Bilevel programming in traffic planning: Models, methods and challenge , 1995, J. Glob. Optim..

[45]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[46]  Michal Kočvara,et al.  On the Solution of Optimum Design Problems with Variational Inequalities , 1995 .

[47]  Michael Florian,et al.  Optimizing frequencies in a transit network: a nonlinear bi-level programming approach , 1995 .

[48]  P. Marcotte,et al.  A bilevel model of taxation and its application to optimal highway pricing , 1996 .

[49]  J. Bard,et al.  Nondifferentiable and Two-Level Mathematical Programming , 1996 .

[50]  M. Kocvara,et al.  Topology optimization with displacement constraints: a bilevel programming approach , 1997 .

[51]  Hai Yang,et al.  Models and algorithms for road network design: a review and some new developments , 1998 .

[52]  Xiaotie Deng,et al.  Complexity Issues in Bilevel Linear Programming , 1998 .

[53]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[54]  Guoshan Liu,et al.  A trust region algorithm for bilevel programing problems , 1998 .

[55]  Mahyar A. Amouzegar,et al.  Determining optimal pollution control policies: An application of bilevel programming , 1999, Eur. J. Oper. Res..

[56]  Yafeng Yin,et al.  Genetic-Algorithms-Based Approach for Bilevel Programming Models , 2000 .

[57]  J. Herskovits,et al.  Contact shape optimization: a bilevel programming approach , 2000 .

[58]  Xinping Shi,et al.  Model and interactive algorithm of bi-level multi-objective decision-making with multiple interconnected decision makers , 2001 .

[59]  Stephan Dempe,et al.  Discrete Bilevel Optimization Problems , 2001 .

[60]  Patrice Marcotte,et al.  A trust region algorithm for nonlinear bilevel programming , 2001, Oper. Res. Lett..

[61]  Martine Labbé,et al.  A Bilevel Model for Toll Optimization on a Multicommodity Transportation Network , 2000, Transp. Sci..

[62]  J. Morgan,et al.  Existence of Solutions to Bilevel Variational Problems in Banach Spaces , 2001 .

[63]  J. Laffont,et al.  The Theory of Incentives: The Principal-Agent Model , 2001 .

[64]  M. Patriksson,et al.  Stochastic bilevel programming in structural optimization , 2001 .

[65]  S. R. Hejazia,et al.  Linear bilevel programming solution by genetic algorithm , 2002 .

[66]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[67]  Yafeng Yin,et al.  Multiobjective bilevel optimization for transportation planning and management problems , 2002 .

[68]  R. Kevin Wood,et al.  Shortest‐path network interdiction , 2002, Networks.

[69]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[70]  Lorenz T. Biegler,et al.  Mathematical programs with equilibrium constraints (MPECs) in process engineering , 2003, Comput. Chem. Eng..

[71]  Michael G.H. Bell,et al.  Traffic signal timing optimisation based on genetic algorithm approach, including drivers’ routing , 2004 .

[72]  Patrice Marcotte,et al.  A bilevel programming approach to the travelling salesman problem , 2004, Oper. Res. Lett..

[73]  Gerald G. Brown,et al.  A Two-Sided Optimization for Theater Ballistic Missile Defense , 2005, Oper. Res..

[74]  Yuping Wang,et al.  An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[75]  Jie Lu,et al.  An extended Kuhn-Tucker approach for linear bilevel programming , 2005, Appl. Math. Comput..

[76]  Patrice Marcotte,et al.  A Trust-Region Method for Nonlinear Bilevel Programming: Algorithm and Computational Experience , 2005, Comput. Optim. Appl..

[77]  Sanaz Mostaghim,et al.  Bilevel Optimization of Multi-Component Chemical Systems Using Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[78]  Gerald G. Brown,et al.  Defending Critical Infrastructure , 2006, Interfaces.

[79]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007, DAC 2006.

[80]  James K. Lowe,et al.  Homeland Security: Operations Research Initiatives and Applications , 2006, Interfaces.

[81]  Jing Hu,et al.  Model Selection via Bilevel Optimization , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[82]  Xiangyong Li,et al.  A Hierarchical Particle Swarm Optimization for Solving Bilevel Programming Problems , 2006, ICAISC.

[83]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[84]  Xianjia Wang,et al.  A Hybrid Differential Evolution Algorithm for Solving Nonlinear Bilevel Programming with Linear Constraints , 2006, 2006 5th IEEE International Conference on Cognitive Informatics.

[85]  Tiesong Hu,et al.  A penalty function method based on Kuhn-Tucker condition for solving linear bilevel programming , 2007, Appl. Math. Comput..

[86]  G. Eichfelder Solving Nonlinear Multiobjective Bilevel Optimization Problems with Coupled Upper Level Constraints , 2007 .

[87]  Tharam S. Dillon,et al.  Decentralized multi-objective bilevel decision making with fuzzy demands , 2007, Knowl. Based Syst..

[88]  B. Mordukhovich,et al.  New necessary optimality conditions in optimistic bilevel programming , 2007 .

[89]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[90]  Li Shan-liang The Supply Chain Optimal Contract Design under Asymmetrical Information , 2007 .

[91]  Shi Feng Bi-level Simulated Annealing Algorithm for Facility Location , 2007 .

[92]  Yuping Wang,et al.  A Hybrid Genetic Algorithm for Solving Nonlinear Bilevel Programming Problems Based on the Simplex Method , 2007, Third International Conference on Natural Computation (ICNC 2007).

[93]  Jing Hu,et al.  Bilevel Optimization and Machine Learning , 2008, WCCI.

[94]  Takeshi Uno,et al.  An evolutionary multi-agent based search method for stackelberg solutions of bilevel facility location problems , 2008 .

[95]  Zhongping Wan,et al.  Genetic algorithm based on simplex method for solving linear-quadratic bilevel programming problem , 2008, Comput. Math. Appl..

[96]  Li Hecheng,et al.  Exponential distribution-based genetic algorithm for solving mixed-integer bilevel programming problems , 2008 .

[97]  Richard L. Church,et al.  A bilevel mixed-integer program for critical infrastructure protection planning , 2008, Comput. Oper. Res..

[98]  Gao Zi-You,et al.  A bi-level programming model and solution algorithm for the location of logistics distribution centers , 2008 .

[99]  Marianthi G. Ierapetritou,et al.  Resolution method for mixed integer bi-level linear problems based on decomposition technique , 2009, J. Glob. Optim..

[100]  Gerald G. Brown,et al.  Interdicting a Nuclear-Weapons Project , 2009, Oper. Res..

[101]  L. P. Fotso,et al.  Solving bilevel programming problems with multicriteria optimization techniques , 2009 .

[102]  M. Anitescu ! MATHEMATICAL PROGRAMS WITH EQUILIBRIUM CONSTRAINTS AND , 2009 .

[103]  Y. Kochetov,et al.  A Hybrid Memetic Algorithm for the Competitive p-Median Problem , 2009 .

[104]  Kalyanmoy Deb,et al.  Constructing test problems for bilevel evolutionary multi-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[105]  Jun Castro,et al.  Designing Multimodal Freight Transport Networks: A Heuristic Approach and Applications , 2009, Transp. Sci..

[106]  K. Deb,et al.  An Evolutionary Approach for Bilevel Multi-objective Problems , 2009 .

[107]  Kalyanmoy Deb,et al.  Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm , 2009 .

[108]  Kalyanmoy Deb,et al.  Solving Bilevel Multi-Objective Optimization Problems Using Evolutionary Algorithms , 2009, EMO.

[109]  Lawrence M. Wein,et al.  OR Forum - Homeland Security: From Mathematical Models to Policy Implementation: The 2008 Philip McCord Morse Lecture , 2009, Oper. Res..

[110]  J. M. Arroyo,et al.  A Genetic Algorithm Approach for the Analysis of Electric Grid Interdiction with Line Switching , 2009, 2009 15th International Conference on Intelligent System Applications to Power Systems.

[111]  Seungjae Lee,et al.  Stochastic multi-objective models for network design problem , 2010, Expert Syst. Appl..

[112]  Nataliya I. Kalashnykova,et al.  Comparison of algorithms for solving a bi-level toll setting problem , 2010 .

[113]  Jane J. Ye,et al.  New Necessary Optimality Conditions for Bilevel Programs by Combining the MPEC and Value Function Approaches , 2010, SIAM J. Optim..

[114]  Jean-Paul Laumond,et al.  From human to humanoid locomotion—an inverse optimal control approach , 2010, Auton. Robots.

[115]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[116]  Gabriele Eichfelder,et al.  Multiobjective bilevel optimization , 2010, Math. Program..

[117]  Kalyanmoy Deb,et al.  An Efficient and Accurate Solution Methodology for Bilevel Multi-Objective Programming Problems Using a Hybrid Evolutionary-Local-Search Algorithm , 2010, Evolutionary Computation.

[118]  Mariano Gallo,et al.  A meta-heuristic approach for solving the Urban Network Design Problem , 2010, Eur. J. Oper. Res..

[119]  Pramanik Surapati,et al.  Bi-level Multi-objective Programming Problem with Fuzzy Parameters , 2011 .

[120]  Graham Currie,et al.  Optimization of Transit Priority in the Transportation Network Using a Genetic Algorithm , 2011, IEEE Transactions on Intelligent Transportation Systems.

[121]  I. K. Altinel,et al.  Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution , 2011, Eur. J. Oper. Res..

[122]  Yuping Wang,et al.  A New Evolutionary Algorithm for a Class of Nonlinear Bilevel Programming Problems and Its Global Convergence , 2011, INFORMS J. Comput..

[123]  Jane J. Ye,et al.  Necessary Optimality Conditions for Multiobjective Bilevel Programs , 2011, Math. Oper. Res..

[124]  Michael Ulbrich,et al.  Imitating human reaching motions using physically inspired optimization principles , 2011, 2011 11th IEEE-RAS International Conference on Humanoid Robots.

[125]  Jesse R. O'Hanley,et al.  Designing robust coverage networks to hedge against worst-case facility losses , 2008, Eur. J. Oper. Res..

[126]  Reza Zanjirani Farahani,et al.  Optimizing reserve capacity of urban road networks in a discrete Network Design Problem , 2011, Adv. Eng. Softw..

[127]  Herminia I. Calvete,et al.  Bilevel model for production-distribution planning solved by using ant colony optimization , 2011, Comput. Oper. Res..

[128]  A. Frantsev,et al.  Finding Optimal Strategies in Multi-Period Stackelberg Games Using an Evolutionary Framework , 2012 .

[129]  Kaisa Miettinen,et al.  Constructing evolutionary algorithms for bilevel multiobjective optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[130]  Gang Ren,et al.  An integrated model for evacuation routing and traffic signal optimization with background demand uncertainty , 2012 .

[131]  Deniz Aksen,et al.  A bilevel fixed charge location model for facilities under imminent attack , 2012, Comput. Oper. Res..

[132]  Tiesong Hu,et al.  An Improved Particle Swarm Optimization for Solving Bilevel Multiobjective Programming Problem , 2012, J. Appl. Math..

[133]  Stephan Dempe,et al.  Necessary Optimality Conditions and a New Approach to Multiobjective Bilevel Optimization Problems , 2012, J. Optim. Theory Appl..

[134]  Jiuping Xu,et al.  A Nonlinear Multiobjective Bilevel Model for Minimum Cost Network Flow Problem in a Large-Scale Construction Project , 2012 .

[135]  J. Hämäläinen,et al.  Bi-level optimization for a dynamic multiobjective problem , 2012 .

[136]  Arnaud Liefooghe,et al.  CoBRA: A cooperative coevolutionary algorithm for bi-level optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[137]  Timothy Bretl,et al.  Inverse optimal control for deterministic continuous-time nonlinear systems , 2013, 52nd IEEE Conference on Decision and Control.

[138]  El-Ghazali Talbi,et al.  Metaheuristics for Bi-level Optimization , 2013 .

[139]  Kalyanmoy Deb,et al.  Multi-objective Stackelberg game between a regulating authority and a mining company: A case study in environmental economics , 2013, 2013 IEEE Congress on Evolutionary Computation.

[140]  Berç Rustem,et al.  Pessimistic Bilevel Optimization , 2013, SIAM J. Optim..

[141]  Robert Leitch,et al.  Solving nonlinear principal-agent problems using bilevel programming , 2013, Eur. J. Oper. Res..

[142]  Helio J. C. Barbosa,et al.  Differential evolution for bilevel programming , 2013, 2013 IEEE Congress on Evolutionary Computation.

[143]  Yan Jiang,et al.  Application of particle swarm optimization based on CHKS smoothing function for solving nonlinear bilevel programming problem , 2013, Appl. Math. Comput..

[144]  Bo An,et al.  A Deployed Quantal Response-Based Patrol Planning System for the U.S. Coast Guard , 2013, Interfaces.

[145]  Zhongping Wan,et al.  A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel programming problems , 2013, Swarm Evol. Comput..

[146]  Herminia I. Calvete,et al.  An efficient evolutionary algorithm for the ring star problem , 2013, Eur. J. Oper. Res..

[147]  Necati Aras,et al.  A Matheuristic for Leader-Follower Games Involving Facility Location-Protection-Interdiction Decisions , 2013 .

[148]  Kalyanmoy Deb,et al.  Efficient Evolutionary Algorithm for Single-Objective Bilevel Optimization , 2013, ArXiv.

[149]  Kalyanmoy Deb,et al.  An improved bilevel evolutionary algorithm based on Quadratic Approximations , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[150]  Kim N. Dirks,et al.  A bilevel multi-objective road pricing model for economic, environmental and health sustainability , 2014 .

[151]  Alain B. Zemkoho,et al.  Necessary optimality conditions in pessimistic bilevel programming , 2014 .

[152]  R. Färe,et al.  Spatial Targeting of Agri-Environmental Policy Using Bilevel Evolutionary Optimization , 2014 .

[153]  Helio J. C. Barbosa,et al.  Differential Evolution assisted by a surrogate model for bilevel programming problems , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[154]  Z. Stanimirović,et al.  Metaheuristic approaches to solving large-scale Bilevel Uncapacitated Facility Location Problem with clients' preferences , 2014 .

[155]  Artem A. Panin,et al.  Bilevel competitive facility location and pricing problems , 2014, Autom. Remote. Control..

[156]  R. G. González-Ramírez,et al.  Solving the Bilevel Facility Location Problem under Preferences by a Stackelberg-Evolutionary Algorithm , 2014 .

[157]  Kalyanmoy Deb,et al.  Finding optimal strategies in a multi-period multi-leader-follower Stackelberg game using an evolutionary algorithm , 2013, Comput. Oper. Res..

[158]  Kalyanmoy Deb,et al.  A bilevel optimization approach to automated parameter tuning , 2014, GECCO.

[159]  S. Minner,et al.  Benders Decomposition for Discrete–Continuous Linear Bilevel Problems with application to traffic network design , 2014 .

[160]  R. Färe,et al.  Valuing water quality tradeoffs at different spatial scales: An integrated approach using bilevel optimization , 2015 .

[161]  Helio J. C. Barbosa,et al.  A study on the use of heuristics to solve a bilevel programming problem , 2015, Int. Trans. Oper. Res..

[162]  José Luis González Velarde,et al.  A heuristic algorithm for a supply chain's production-distribution planning , 2015, Comput. Oper. Res..

[163]  Kalyanmoy Deb,et al.  Handling decision variable uncertainty in bilevel optimization problems , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[164]  Nataliya I. Kalashnykova,et al.  Bilevel Programming and Applications , 2015 .

[165]  Nataliya I. Kalashnykova,et al.  Bilevel Programming Problems , 2015 .

[166]  Abir Chaabani,et al.  A new co-evolutionary decomposition-based algorithm for bi-level combinatorial optimization , 2015, Applied Intelligence.

[167]  Risto Miikkulainen,et al.  Evolutionary Bilevel Optimization for Complex Control Tasks , 2015, GECCO.

[168]  José-Fernando Camacho-Vallejo,et al.  A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks , 2015, PloS one.

[169]  Kalyanmoy Deb,et al.  Transportation policy formulation as a multi-objective bilevel optimization problem , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[170]  José Luis González Velarde,et al.  A Scatter Search Algorithm for Solving a Bilevel Optimization Model for Determining Highway Tolls , 2015, Computación y Sistemas.

[171]  Wei Fan,et al.  Optimal congestion pricing toll design for revenue maximization: comprehensive numerical results and implications , 2015 .

[172]  Kalyanmoy Deb,et al.  Towards Understanding Bilevel Multi-objective Optimization with Deterministic Lower Level Decisions , 2015, EMO.

[173]  Hoong Chuin Lau,et al.  Solving multi-vehicle profitable tour problem via knowledge adoption in evolutionary bi-level programming , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[174]  Ankur Sinha,et al.  Incorporating data envelopment analysis solution methods into bilevel multi-objective optimization , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[175]  Peter Kulchyski and , 2015 .

[176]  Hecheng Li,et al.  A genetic algorithm using a finite search space for solving nonlinear/linear fractional bilevel programming problems , 2015, Ann. Oper. Res..

[177]  Kalyanmoy Deb,et al.  Solving Bilevel Multicriterion Optimization Problems With Lower Level Decision Uncertainty , 2016, IEEE Transactions on Evolutionary Computation.

[178]  Kalyanmoy Deb,et al.  Handling inverse optimal control problems using evolutionary bilevel optimization , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[179]  José-Fernando Camacho-Vallejo,et al.  Analyzing the Performance of a Hybrid Heuristic for Solving a Bilevel Location Problem under Different Approaches to Tackle the Lower Level , 2016 .

[180]  Nataliya I. Kalashnykova,et al.  A heuristic algorithm solving bilevel toll optimization problems , 2016 .

[181]  Massimiliano Caramia,et al.  A decomposition approach to solve a bilevel capacitated facility location problem with equity constraints , 2016, Optim. Lett..

[182]  Ankur Sinha,et al.  Hub Interdiction & Hub Protection problems: Model formulations & Exact Solution methods. (Revised) , 2016 .

[183]  Kalyanmoy Deb,et al.  Solving optimistic bilevel programs by iteratively approximating lower level optimal value function , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[184]  Kalyanmoy Deb,et al.  Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping , 2017, Eur. J. Oper. Res..

[185]  Kalyanmoy Deb,et al.  Evolutionary Bilevel Optimization: An Introduction and Recent Advances , 2017, Recent Advances in Evolutionary Multi-objective Optimization.

[186]  K. Deb,et al.  Bilevel Optimization based on Iterative Approximation of Mappings , 2017 .

[187]  Kalyanmoy Deb,et al.  Bilevel optimization based on iterative approximation of multiple mappings , 2020, J. Heuristics.