A quantitative model for identifying regions of design visual attraction and application to automobile styling

Analysis of design regions of visual attention that affect aesthetic appeal is an important topic for both practicing designers and design researchers. The paper introduces a data-driven methodology consisting of four stages: (1) design feature learning, (2) design attribute prediction, (3) salient feature selection, and (4) salient feature visualization. Using this methodology, we making inroads to inverting the nonlinear function from design images and design aesthetic attributes, and give preliminary results for an automotive styling study.

[1]  Andrew T Duchowski,et al.  A breadth-first survey of eye-tracking applications , 2002, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[2]  Leon A. Gatys,et al.  A Neural Algorithm of Artistic Style , 2015, ArXiv.

[3]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[4]  Jonathan Cagan,et al.  Multiagent Shape Grammar Implementation: Automatically Generating Form Concepts According to a Preference Function , 2009 .

[5]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[6]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[7]  Alex Burnap,et al.  Quantification of perceptual design attributes using a crowd , 2013 .

[8]  Jonathan Cagan,et al.  Quantifying Aesthetic Form Preference in a Utility Function , 2009 .

[9]  Jitesh H. Panchal USING CROWDS IN ENGINEERING DESIGN – TOWARDS A HOLISTIC FRAMEWORK , 2015 .

[10]  Trevor Darrell,et al.  Recognizing Image Style , 2013, BMVC.

[11]  Peter H. Bloch Seeking the Ideal Form: Product Design and Consumer Response , 1995 .

[12]  Yi Ren,et al.  IMPROVING PREFERENCE PREDICTION ACCURACY WITH FEATURE LEARNING , 2014, DAC 2014.

[13]  Tahira Reid,et al.  Eye tracking data understanding for product representation studies , 2014, RIIT '14.

[14]  Sven Matthiesen,et al.  Combination of Eye Tracking and Think-Aloud Methods in Engineering Design Research , 2015 .

[15]  Panos Y. Papalambros,et al.  Quantification of perceived environmental friendliness for vehicle silhouette design , 2010 .

[16]  Jean-François Petiot,et al.  Preference-oriented form design: application to cars’ headlights , 2009 .

[17]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[18]  Alex Burnap,et al.  CROWDSOURCING: A PRIMER AND ITS IMPLICATIONS FOR SYSTEMS ENGINEERING , 2012 .

[19]  D. Norman Emotional design : why we love (or hate) everyday things , 2004 .

[20]  Erin F. MacDonald,et al.  Eye-Tracking Data Predict Importance of Product Features and Saliency of Size Change , 2014 .

[21]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[22]  Emilie Poirson,et al.  Eliciting User Perceptions Using Assessment Tests Based on an Interactive Genetic Algorithm , 2013 .

[23]  Jay McCormack,et al.  Speaking the Buick Language: Capturing, Understanding, and Exploring Brand Identity With Shape Grammars , 2004 .

[24]  Honglak Lee,et al.  Sparse deep belief net model for visual area V2 , 2007, NIPS.

[25]  Joan L. Walker,et al.  Extended Framework for Modeling Choice Behavior , 1999 .

[26]  Jonathan Cagan,et al.  Capturing a rebel: modeling the Harley-Davidson brand through a motorcycle shape grammar , 2002 .

[27]  Erin F. MacDonald,et al.  Impact of Product Design Representation on Customer Judgment , 2013 .

[28]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[29]  Panos Y. Papalambros,et al.  Incorporating user shape preference in engineering design optimisation , 2011 .

[30]  Levent Burak Kara,et al.  Semantic shape editing using deformation handles , 2015, ACM Trans. Graph..

[31]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[32]  Min-Yuan Ma,et al.  Exploring the Visual Cognitive Features on the Design of Car Based on the Theory of Eye-Tracking Technology , 2013 .

[33]  P. Clarkson,et al.  Seeing things: consumer response to the visual domain in product design , 2004 .

[34]  Jonathan Cagan,et al.  Experiential Conjoint Analysis: An Experience-Based Method for Eliciting, Capturing, and Modeling Consumer Preference , 2014 .

[35]  Mitsuo Nagamachi,et al.  Kansei Engineering: A new ergonomic consumer-oriented technology for product development , 1995 .

[36]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).