What is the torque bandwidth of this actuator?

The paper proposes a method to assess the feasible torque bandwidth for electrically driven torque controllable actuators over its entire torque amplitude range. The method solely relies on the knowledge of hardware parameters and thereby determines the physically feasible torque control bandwidth at a given torque amplitude, independent of a controller. The method yields torque-frequency diagrams that are suitable to benchmark torque controllers, formulate actuator design specifications and compare as well as select actuators for a specific torque control application. The paper exemplifies the method on a WALK-MAN leg actuator with locked actuator output and the more practical case of a varying load inertia.

[1]  M. Indri,et al.  Friction Compensation in Robotics: an Overview , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[2]  Jörn Malzahn,et al.  Comparison of open-loop and closed-loop disturbance observers for series elastic actuators , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[3]  Peter Fankhauser,et al.  ANYmal - a highly mobile and dynamic quadrupedal robot , 2016, IROS 2016.

[4]  E. LESTER SMITH,et al.  AND OTHERS , 2005 .

[5]  Christian Ott,et al.  Unified Impedance and Admittance Control , 2010, 2010 IEEE International Conference on Robotics and Automation.

[6]  Alin Albu-Schäffer,et al.  Anthropomorphic Soft Robotics - From Torque Control to Variable Intrinsic Compliance , 2009, ISRR.

[7]  Rolf Isermann,et al.  Identification of Dynamic Systems , 2011 .

[8]  Paolo Rocco,et al.  Impedance control for elastic joints industrial manipulators , 2004, IEEE Transactions on Robotics and Automation.

[9]  Chien-Liang Fok,et al.  Actuator Control for the NASA‐JSC Valkyrie Humanoid Robot: A Decoupled Dynamics Approach for Torque Control of Series Elastic Robots , 2015, J. Field Robotics.

[10]  Jörn Malzahn,et al.  On the Stiffness Selection for Torque-Controlled Series-Elastic Actuators , 2017, IEEE Robotics and Automation Letters.

[11]  Jörn Malzahn,et al.  A modular compliant actuator for emerging high performance and fall-resilient humanoids , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[12]  Santosh Devasia,et al.  Should model-based inverse inputs be used as feedforward under plant uncertainty? , 2002, IEEE Trans. Autom. Control..

[13]  Alin Albu-Schäffer,et al.  On impact decoupling properties of elastic robots and time optimal velocity maximization on joint level , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Rolf Isermann,et al.  Identification of Dynamic Systems: An Introduction with Applications , 2010 .

[15]  Jörn Malzahn,et al.  WALK‐MAN: A High‐Performance Humanoid Platform for Realistic Environments , 2017, J. Field Robotics.

[16]  Albert Wang,et al.  Proprioceptive Actuator Design in the MIT Cheetah: Impact Mitigation and High-Bandwidth Physical Interaction for Dynamic Legged Robots , 2017, IEEE Transactions on Robotics.

[17]  Roland Siegwart,et al.  High compliant series elastic actuation for the robotic leg scarleth , 2011 .

[18]  Nikolaos G. Tsagarakis,et al.  On the stiffness design of intrinsic compliant manipulators , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.