Approximated Centroidal Voronoi Diagrams for Uniform Polygonal Mesh Coarsening

We present a novel clustering algorithm for polygonal meshes which approximates a Centroidal Voronoi Diagram construction. The clustering provides an efficient way to construct uniform tessellations, and therefore leads to uniform coarsening of polygonal meshes, when the output triangulation has many fewer elements than the input mesh. The mesh topology is also simplified by the clustering algorithm. Based on a mathematical framework, our algorithm is easy to implement, and has low memory requirements. We demonstrate the efficiency of the proposed scheme by processing several reference meshes having up to 1 million triangles and very high genus within a few minutes on a low‐ end computer.

[1]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[2]  Katsushi Ikeuchi,et al.  Shape representation and image segmentation using deformable surfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  Katsushi Ikeuchi,et al.  Shape representation and image segmentation using deformable surfaces , 1992, Image Vis. Comput..

[4]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[5]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[6]  Jyrki Lötjönen,et al.  A triangulation method of an arbitrary point set for biomagnetic problems , 1998 .

[7]  Houman BOROUCHAKIyUTT,et al.  Surface Mesh Evaluation , 1997 .

[8]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[9]  Paul S. Heckbert,et al.  Survey of Polygonal Surface Simplification Algorithms , 1997 .

[10]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[11]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[12]  Jarek Rossignac,et al.  Multi-resolution 3D approximations for rendering complex scenes , 1993, Modeling in Computer Graphics.

[13]  Rémy Prost,et al.  Wavelet-based multiresolution analysis of irregular surface meshes , 2004, IEEE Transactions on Visualization and Computer Graphics.

[14]  Leif Kobbelt,et al.  A Stream Algorithm for the Decimation of Massive Meshes , 2003, Graphics Interface.

[15]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[16]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[17]  John Hart,et al.  ACM Transactions on Graphics: Editorial , 2003, SIGGRAPH 2003.

[18]  Martin Isenburg,et al.  Large mesh simplification using processing sequences , 2003, IEEE Visualization, 2003. VIS 2003..

[19]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[20]  Gary L. Miller,et al.  Optimal good-aspect-ratio coarsening for unstructured meshes , 1997, SODA '97.

[21]  Craig Gotsman,et al.  Explicit Surface Remeshing , 2003, Symposium on Geometry Processing.

[22]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[23]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[24]  Greg Turk,et al.  Simplification and Repair of Polygonal Models Using Volumetric Techniques , 2003, IEEE Trans. Vis. Comput. Graph..

[25]  Alla Sheffer,et al.  Geodesic-based Surface Remeshing , 2003, IMR.

[26]  Laurent D. Cohen,et al.  Geodesic Remeshing Using Front Propagation , 2003, International Journal of Computer Vision.

[27]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[28]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.