Amplification and percolation (probabilistic Boolean functions)
暂无分享,去创建一个
[1] A. N. Sokolov. Partial decoding of monotonic Boolean functions , 1983 .
[2] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[3] M.M. Halldorsson,et al. Directed vs. undirected monotone contact networks for threshold functions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[4] Ronald L. Rivest. The Necessity of Feedback in Minimal Monotone Combinational Circuits , 1977, IEEE Transactions on Computers.
[5] Michael Sipser,et al. Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
[6] Toshihide Ibaraki,et al. A Lower Bound of the Number of Threshold Functions , 1965, IEEE Trans. Electron. Comput..
[7] Koichiro Yamamoto. Logarithmic order of free distributive lattice , 1954 .
[8] Yu. A. Zuev,et al. Estimating the efficiency of threshold representations of Boolean functions , 1988 .
[9] I. Ninomiya. A study of the structures of Boolean functions and its application to the synthesis of switching circutis. , 1962 .
[10] N. Gallagher,et al. An overview of median and stack filtering , 1992 .
[11] Nicholas Pippenger,et al. On Another Boolean Matrix , 1980, Theor. Comput. Sci..
[12] Jaikumar Radhakrishnan,et al. ΣΠΣ Threshold Formulas , 1994 .
[13] Ingo Wegener,et al. Switching Functions Whose Monotone Complexity is Nearly Quadratic , 1979, Theor. Comput. Sci..
[14] Jürgen Tiekenheinrich. A 4n-Lower Bound on the Monotone Network Complexity of a One-Output Boolean Function , 1984, Inf. Process. Lett..
[15] M. Paterson,et al. Optimal carry save networks , 1992 .
[16] N. N. Katerinochkina. Search for a maximum upper zero for a class of monotonic functions in k-valued logic☆ , 1981 .
[17] Ingo Wegener. A Counterexample to a Conjecture of Schnorr Referring to Monotone Networks , 1979, Theor. Comput. Sci..
[18] Toshihide Ibaraki,et al. Identifying 2-Monotonic Positive Boolean Functions in Polynominal Time , 1991, ISA.
[19] Andrew Chi-Chih Yao,et al. A lower bound for the monotone depth of connectivity , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[20] N. N. Katerinochkina. The problem of finding the maximum upper zero for a series of subclasses of monotonic Boolean functions , 1989 .
[21] Randolph Church,et al. Nunmerical analysis of certain free distributive structures , 1940 .
[22] Paul E. Dunne,et al. On Monotone Simulations of Nonmonotone Networks , 1989, Theor. Comput. Sci..
[23] Uri Zwick,et al. Faster circuits and shorter formulae for multiple addition, multiplication and symmetric Boolean functions , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
[24] E. A. Lamagna,et al. Combinational Complexity of Some Monotone Functions , 1974, SWAT.
[25] Ingo Wegener. Boolean Functions Whose Monotone Complexity is of Size n2/log n , 1981, Theoretical Computer Science.
[26] S. S. Marchenkov. Existence of finite bases in closed classes of Boolean functions , 1984 .
[27] Ravi B. Boppana,et al. The Complexity of Finite Functions , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[28] John Gill,et al. Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..
[29] Kurt Mehlhorn,et al. Monotone Switching Circuits and Boolean Matrix Product , 1975, MFCS.
[30] D. Lubell. A Short Proof of Sperner’s Lemma , 1966 .
[31] Giulia Galbiati. M. J. Fischer: On the Complexity of 2-Output Boolean Networks , 1981, Theor. Comput. Sci..
[32] P. Dunne. Relationships between monotone and non-monotone network complexity , 1992 .
[33] Robert O. Winder,et al. Enumeration of Seven-Argument Threshold Functions , 1965, IEEE Trans. Electron. Comput..
[34] V. I. Terenkov. The accuracy of algorithms for calculating estimates for tables generated by monotonic boolean functions , 1973 .
[35] Johan Håstad,et al. A Simple Lower Bound for Monotone Clique Using a Communication Game , 1992, Inf. Process. Lett..
[36] William F. McColl,et al. On the Planar Monotone Computation of Threshold Functions , 1985, STACS.
[37] Ravi B. Boppana,et al. Amplification of probabilistic boolean formulas , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[38] Michael J. Fischer. Hauptvortrag: The complexity of negation-limited networks - A brief survey , 1975, Automata Theory and Formal Languages.
[39] Leslie M. Goldschlager,et al. A Space Efficient Algorithm for the Monotone Planar Circuit Value Problem , 1980, Information Processing Letters.
[40] Uri Zwick,et al. Shrinkage of de Morgan formulae under restriction , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[41] S. Mrowka,et al. On The Cardinality of Closed Subsets , 1964 .
[42] Beate Commentz-Walter. Size-Depth Tradeoff in Boolean Formulas , 1978, ICALP.
[43] Johan Håstad. The shrinkage exponent is 2 , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[44] J. A. Riley,et al. Inessentiality in Minimal Networks and Formulas , 1962, IRE Trans. Electron. Comput..
[45] V. Strassen. Gaussian elimination is not optimal , 1969 .
[46] Claus-Peter Schnorr,et al. A Lower Bound on the Number of Additions in Monotone Computations , 1976, Theor. Comput. Sci..
[47] Ingo Wegener,et al. The complexity of Boolean functions , 1987 .
[48] Mauricio Karchmer,et al. On proving lower bounds for circuit size , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.
[49] Michael Ben-Or,et al. A theorem on probabilistic constant depth Computations , 1984, STOC '84.
[50] Wolfgang J. Paul. Realizing Boolean Functions on Disjoint sets of Variables , 1976, Theor. Comput. Sci..
[51] N. N. Katerinochkina. Finding a maximal zero for some classes of monotone Boolean functions in Post's classification , 1990 .
[52] Roman Smolensky,et al. Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.
[53] Moshe Dubiner,et al. Amplification and Percolation , 1992, FOCS 1992.
[54] William F. McColl. The Maximum Depth of Monotone Formulae , 1978, Inf. Process. Lett..
[55] Ingo Wegener,et al. On the Complexity of Slice Functions , 1984, Theor. Comput. Sci..
[56] Andrew Chi-Chih Yao. Circuits and local computation , 1989, STOC '89.
[57] Claude E. Shannon,et al. Reliable Circuits Using Less Reliable Relays , 1956 .
[58] David R. Smith,et al. Bounds on the Number of Threshold Functions , 1966, IEEE Trans. Electron. Comput..
[59] Yu.A. Zuev,et al. On the connection between linear inequalities and monotonic boolean functions , 1984 .
[60] Leslie G. Valiant,et al. Exponential lower bounds for restricted monotone circuits , 1983, STOC.
[61] Douglas H. Wiedemann,et al. A computation of the eighth Dedekind number , 1991 .
[62] Sven Skyum. A Measure in Which Boolean Negation is Exponentially Powerful , 1982 .
[63] Paul. E. Dunne. A 2.5 n lower bound on the monotone network complexity of T 3 n , 1985 .
[64] Emil L. Post. The two-valued iterative systems of mathematical logic , 1942 .
[65] Nicholas Pippenger. The realization of monotone Boolean functions (Preliminary Version) , 1976, STOC '76.
[66] Claude E. Shannon,et al. The Number of Two‐Terminal Series‐Parallel Networks , 1942 .
[67] N. M. Riviere,et al. Recursive formulas on free distributive lattices , 1968 .
[68] Mike Paterson,et al. Complexity of Monotone Networks for Boolean Matrix Product , 1974, Theor. Comput. Sci..
[69] Robert O. Winder,et al. Single stage threshold logic , 1961, SWCT.
[70] Ingo Wegener,et al. Relating Monotone Formula Size and Monotone Depth of Boolean Functions , 1983, Inf. Process. Lett..
[71] Noam Nisan,et al. The Effect of Random Restrictions on Formula Size , 1993, Random Struct. Algorithms.
[72] Konrad Engel,et al. Sperner theory in partially ordered sets , 1985 .
[73] N. N. Katerinochkina. THE SEARCH FOR THE MAXIMUM UPPER ZERO OF SOME SUBCLASSES OF MONOTONIC BOOLEAN FUNCTIONS , 1978 .
[74] Valery A. Vardanian,et al. On the length of single dynamic tests for monotone Boolean functions , 1985, International Symposium on Fundamentals of Computation Theory.
[75] Michael J. Fischer,et al. Omega(n log n) Lower Bounds on Length of Boolean Formulas , 1982, SIAM J. Comput..
[76] R. E. Krichevskii,et al. Complexity of Contact Circuits Realizing a Function of Logical Algebra , 1964 .
[77] Russell Impagliazzo,et al. Communication complexity towards lower bounds on circuit depth , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[78] A. Razborov. Lower bounds on monotone complexity of the logical permanent , 1985 .
[79] Alexander A. Razborov,et al. Applications of matrix methods to the theory of lower bounds in computational complexity , 1990, Comb..
[80] Mike Paterson. New bounds on formula size , 1977, Theoretical Computer Science.
[81] Juraj Hromkovic. On the number of monotonic functions from two-valued logic to k-valued logic , 1985, Kybernetika.
[82] R. Dedekind,et al. Über Zerlegungen von Zahlen Durch Ihre Grössten Gemeinsamen Theiler , 1897 .
[83] Yu.A. Zuev,et al. The lower bound of the number of inequalities which represent a monotonic boolean function of n variables , 1983 .
[84] Michael J. Fischer,et al. Boolean Matrix Multiplication and Transitive Closure , 1971, SWAT.
[85] Ingo Wegener,et al. Properties of Complexity Measures for PRAMs and WRAMs , 1986, MFCS.
[86] Koichi Yamamoto. Note on the Order of Free Distributive Lattices , 1953 .
[87] Saburo Muroga,et al. Enumeration of Threshold Functions of Eight Variables , 1970, IEEE Transactions on Computers.
[88] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[89] Paul E. Dunne,et al. The Complexity of Boolean Networks , 1988 .
[90] A. I. Zelichenko. The correspondence of monotonic boolean functions to systems of linear inequalities , 1979 .
[91] Alexander A. Razborov,et al. On Small Depth Threshold Circuits , 1992, SWAT.
[92] Pavel Pudlák. Bounds for Hodes-Specker theorem , 1983, Logic and Machines.
[93] Ingo Wegener. The critical complexity of all (monotone) Boolean functions and monotone graph properties , 1985, FCT.
[94] Ravi B. Boppana,et al. Threshold Functions and Bounded Depth Monotone Circuits , 1986, J. Comput. Syst. Sci..
[95] M. den Nijs,et al. A relation between the temperature exponents of the eight-vertex and q-state Potts model , 1979 .
[96] Edmund A. Lamagna,et al. The Complexity of Monotone Networks for Certain Bilinear Forms, Routing Problems, Sorting, and Merging , 1979, IEEE Transactions on Computers.
[97] Vaughan R. Pratt,et al. The power of negative thinking in multiplying Boolean matrices , 1974, STOC '74.
[98] Harold N. Shapiro. On the counting problem for monotone boolean functions , 1970 .
[99] Johan Håstad,et al. Almost optimal lower bounds for small depth circuits , 1986, STOC '86.
[100] Ioannis Pitas,et al. Nonlinear Digital Filters - Principles and Applications , 1990, The Springer International Series in Engineering and Computer Science.
[101] Claus-Peter Schnorr. Computation of the Boolean Matrix-Vector, AND/OR-Produkt in Average Time O(m + nlnn) , 1992, Informatik.
[102] Ingo Wegener,et al. Symmetric Functions in AC0A Can Be Computed in Constant Depth With Very Small Size , 1990, MFCS.
[103] Paul Erdös,et al. Extremal problems among subsets of a set , 1974, Discret. Math..
[104] Saburo Muroga,et al. Lower Bounds of the Number of Threshold Functions and a Maximum Weight , 1962, IEEE Trans. Electron. Comput..
[105] A. Razborov. On submodular complexity measures , 1992 .
[106] A. A. Sapozhenko. The search for a maximum upper zero of a monotone function on ranked sets , 1991 .
[107] Éva Tardos,et al. The gap between monotone and non-monotone circuit complexity is exponential , 1988, Comb..
[108] Avi Wigderson,et al. Monotone circuits for connectivity require super-logarithmic depth , 1990, STOC '88.
[109] Claude E. Shannon,et al. A symbolic analysis of relay and switching circuits , 1938, Transactions of the American Institute of Electrical Engineers.
[110] Johan Håstad,et al. On the power of small-depth threshold circuits , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
[111] A. Razborov. Lower bounds on the size of bounded depth circuits over a complete basis with logical addition , 1987 .
[112] Jaikumar Radhakrishnan. Better bounds for threshold formulas , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[113] Edward J. Coyle,et al. Stack filters , 1986, IEEE Trans. Acoust. Speech Signal Process..
[114] G. P. Tonoyan. The successive splitting of vertices of an n-dimensional unit cube into chains and decoding problems of monotonic boolean functions , 1979 .
[115] Ingo Wegener,et al. Proving lower bounds of the monotone complexity of Boolean functions , 1983, Logic and Machines.
[116] V. M. Khrapchenko. The complexity of the realization of symmetrical functions by formulae , 1972 .
[117] Jaikumar Radhakrishnan,et al. Directed Monotone Contact Networks for Threshold Functions , 1994, Inf. Process. Lett..
[118] Qian-Ping Gu,et al. Amplification of Bounded Depth Monotone Read-Once Boolean Formulae , 1991, SIAM J. Comput..
[119] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[120] E. Gilbert. Lattice Theoretic Properties of Frontal Switching Functions , 1954 .
[121] V. A. Vardanyan. Complexity of single dynamic tests for monotone Boolean functions , 1987 .
[122] Leslie G. Valiant,et al. Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.
[123] Alexander A. Razborov,et al. Natural Proofs , 2007 .
[124] M. Sipser,et al. Monotone complexity , 1992 .
[125] Eiichi Goto,et al. Some Theorems Useful in Threshold Logic for Enumerating Boolean Functions , 1962, IFIP Congress.
[126] Ingo Wegener. Best Possible Asymptotic Bounds on the Depth of Monotone Functions in Multivalued Logic , 1982, Inf. Process. Lett..
[127] J. Friedman. Constructing O(n log n) Size Monotone Formulae for the k-th Elementary Symmetric Polynomial of n Boolean Variables , 1984, FOCS.
[128] Yu. I. Zhuravlev,et al. An approach to optimization in a class of parametric recognition algorithms , 1976 .
[129] Alexander A. Razborov,et al. On the method of approximations , 1989, STOC '89.
[130] A. Razborov,et al. COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: Lower estimates of the dimension of schemes of bounded depth in the basis \{\&,\vee,\oplus\} , 1986 .
[131] L. Lovász,et al. The Work of A. A. Razborov , 1990 .
[132] Leslie G. Valiant. Negation is Powerless for Boolean Slice Functions , 1986, SIAM J. Comput..
[133] Michael E. Saks,et al. Size-depth trade-offs for threshold circuits , 1993, STOC.
[134] Joel Friedman. Constructing O(n log n) Size Monotone Formulae for the k-th Threshold Function of n Boolean Variables , 1986, SIAM J. Comput..
[135] Yu. A. Zuev. Representations of Boolean functions by systems of linear inequalities , 1985 .
[136] S. Muroga,et al. Theory of majority decision elements , 1961 .
[137] Harry Kesten,et al. Percolation Theory and First-Passage Percolation , 1987 .
[138] O. B. Lupanov. On the Influence of the Depth of Formulas on Their Complexity , 1971 .
[139] A. D. Korshunov. The Number and the Structure of Typical Sperner and K-Non-Separable Families of Subsets of a Finite Set , 1987, FCT.
[140] Vince Grolmusz,et al. A weight-size trade-off for circuits with MOD m gates , 1994, STOC '94.
[141] Jürgen Weiss,et al. An n^3/2 Lower Bound on the Monotone Network Complexity of the Boolean Convolution , 1984, Inf. Control..
[142] A. Yao. Separating the polynomial-time hierarchy by oracles , 1985 .
[143] Toshihide Ibaraki,et al. The Maximum Latency and Identification of Positive Boolean Functions , 1994, ISAAC.
[144] L. H. Harper,et al. On the complexity of the marriage problem , 1972 .
[145] Claude E. Shannon,et al. The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..
[146] Leonard M. Adleman,et al. Two theorems on random polynomial time , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).
[147] Ingo Wegener,et al. A new lower bound on the monotone network complexity of Boolean sums , 1980, Acta Informatica.
[148] R. Tarjan. Complexity of monotone networks for computing conjunctions , 1976 .