Pareto Optimality in Coalition Formation

A minimal requirement on allocative efficiency in the social sciences is Pareto optimality. In this paper, we identify a far-reaching structural connection between Pareto optimal and perfect partitions that has various algorithmic consequences for coalition formation. In particular, we show that computing and verifying Pareto optimal partitions in general hedonic games and B-hedonic games is intractable while both problems are tractable for roommate games and W-hedonic games. The latter two positive results are obtained by reductions to maximum weight matching and clique packing, respectively.

[1]  Katarína Cechlárová,et al.  On the complexity of exchange-stable roommates , 2002, Discret. Appl. Math..

[2]  Jana Hajduková,et al.  Stable partitions with W -preferences , 2004, Discret. Appl. Math..

[3]  Katarína Cechlárová,et al.  Stability Of Partitions Under WB-Preferences And BW-Preferences , 2004, Int. J. Inf. Technol. Decis. Mak..

[4]  F. Masarani,et al.  A problem in discrete distributive justice , 1991 .

[5]  Tayfun Sönmez,et al.  Core in a simple coalition formation game , 2001, Soc. Choice Welf..

[6]  M. Jackson,et al.  A Strategic Model of Social and Economic Networks , 1996 .

[7]  Eytan Ronn,et al.  NP-Complete Stable Matching Problems , 1990, J. Algorithms.

[8]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[9]  Thayer Morrill,et al.  The roommates problem revisited , 2008, J. Econ. Theory.

[10]  M. Utku Ünver,et al.  Matching, Allocation, and Exchange of Discrete Resources , 2009 .

[11]  Coralio Ballester,et al.  NP-completeness in hedonic games , 2004, Games Econ. Behav..

[12]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[13]  L. Shapley,et al.  On cores and indivisibility , 1974 .

[14]  F. Masarani,et al.  On the existence of fair matching algorithms , 1989 .

[15]  Dimitrios Michail,et al.  Reducing rank-maximal to maximum weight matching , 2007, Theor. Comput. Sci..

[16]  J. Drèze,et al.  HEDONIC COALITIONS: OPTIMALITY AND STABILITY , 1980 .

[17]  Gérard Cornuéjols,et al.  Packing subgraphs in a graph , 1982, Oper. Res. Lett..

[18]  Atila Abdulkadiroglu,et al.  RANDOM SERIAL DICTATORSHIP AND THE CORE FROM RANDOM ENDOWMENTS IN HOUSE ALLOCATION PROBLEMS , 1998 .

[19]  David G. Kirkpatrick,et al.  Packings by cliques and by finite families of graphs , 1984, Discret. Math..

[20]  Katarína Cechlárová On the Complexity of the Shapley-Scarf Economy with Several Types of Goods , 2009, Kybernetika.

[21]  Eric McDermid,et al.  Three-Sided Stable Matchings with Cyclic Preferences , 2010, Algorithmica.

[22]  Ning Chen,et al.  On Computing Pareto Stable Assignments , 2012, STACS.

[23]  Aytek Erdil,et al.  What's the Matter with Tie-Breaking? Improving Efficiency in School Choice , 2008 .

[24]  K. Mehlhorn,et al.  Pareto Optimality in House Allocation Problems , 2005, ISAAC.

[25]  Vijay Kumar,et al.  Assignment Problems in Rental Markets , 2006, WINE.

[26]  Matthew O. Jackson,et al.  The Stability of Hedonic Coalition Structures , 2002, Games Econ. Behav..

[27]  T. Quint,et al.  On the Shapley–Scarf economy: the case of multiple types of indivisible goods , 2001 .

[28]  Daniel S. Hirschberg,et al.  Three-Dimensional Stable Matching Problems , 1991, SIAM J. Discret. Math..

[29]  Atila Abdulkadiroglu,et al.  HOUSE ALLOCATION WITH EXISTING TENANTS , 1999 .

[30]  José Alcalde,et al.  Top dominance and the possibility of strategy-proof stable solutions to matching problems , 1994 .

[31]  Alvin E. Roth,et al.  The Economics of Matching: Stability and Incentives , 1982, Math. Oper. Res..

[32]  Jorge Alcalde-Unzu,et al.  Exchange of indivisible goods and indifferences: The Top Trading Absorbing Sets mechanisms , 2009, Games Econ. Behav..