How difficult is nonlinear optimization? A practical solver tuning approach, with illustrative results

Nonlinear optimization (NLO) encompasses a vast range of problems, from very simple to theoretically intractable instances. For this reason, it is impossible to offer guaranteed—while practically meaningful—advice to users of NLO software. This issue becomes apparent, when facing exceptionally hard and/or previously unexplored NLO challenges. We propose a heuristic quadratic meta-model based approach, and suggest corresponding key option settings to use with the Lipschitz global optimizer (LGO) solver suite. These LGO option settings are directly related to estimating the sufficient computational effort to handle a broad range of NLO problems. The proposed option settings are evaluated experimentally, by solving (numerically) a representative set of NLO test problems which are based on real-world optimization applications and non-trivial academic challenges. Our tests include also a set of scalable optimization problems which are increasingly difficult to handle as the size of the model-instances increases. Based on our computational results, it is possible to offer generally valid, practical advice to LGO users. Arguably (and mutatis mutandis), comparable advice can be given to users of other NLO software products with a similarly broad mandate to LGO’s. An additional benefit of such aggregated tests is that their results can effectively assist the rapid evaluation and verification of NLO solver performance during software development phases.

[1]  J. Pintér,et al.  Development and Calibration of Currency Market Strategies by Global Optimization , 2010 .

[2]  János D. Pintér,et al.  Benchmarking nonlinear optimization software in technical computing environments , 2013 .

[3]  Steven Skiena,et al.  The Algorithm Design Manual , 2020, Texts in Computer Science.

[4]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[5]  János Pintér Globally optimized calibration of environmental models , 1990 .

[6]  Dieter Hoffmann,et al.  Optimization―Theory and Practice , 2010 .

[7]  Stefan M. Wild,et al.  Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..

[8]  I. Grossmann Global Optimization in Engineering Design , 2010 .

[9]  János D. Pintér,et al.  Solving circle packing problems by global optimization: Numerical results and industrial applications , 2008, Eur. J. Oper. Res..

[10]  János D. Pintér,et al.  MathOptimizer Professional: Key Features and Illustrative Applications , 2006 .

[11]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[12]  János D. Pintér,et al.  Development and calibration of a currency trading strategy using global optimization , 2013, J. Glob. Optim..

[13]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[14]  Andreas Ritter,et al.  Handbook Of Test Problems In Local And Global Optimization , 2016 .

[15]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..

[16]  Sanjay J. Patel,et al.  Continuous Optimization , 2005, ISCA 2005.

[17]  A. Ruszczynski,et al.  Nonlinear Optimization , 2006 .

[18]  Zelda B. Zabinsky,et al.  Stochastic Adaptive Search for Global Optimization , 2003 .

[19]  Andreas Antoniou,et al.  Practical Optimization: Algorithms and Engineering Applications , 2007, Texts in Computer Science.

[20]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[21]  Guoliang Xue,et al.  The MINPACK-2 test problem collection , 1992 .

[22]  János D. Pintér,et al.  Globally optimized packings of non-uniform size spheres in $$\mathbb {R}^{d}$$Rd: a computational study , 2018, Optim. Lett..

[23]  János Pintér,et al.  Environmental model calibration under different specifications: an application to the model SED , 1993 .

[24]  Jack P. C. Kleijnen Design and Analysis of Simulation Experiments , 2007 .

[25]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[26]  Brian Borchers,et al.  Review of practical optimization: algorithms and engineering applications by Andreas Antoniou and Wu-Sheng Lu (Springer Verlag, 2007) , 2009, SIGA.

[27]  Zelda B. Zabinsky,et al.  Comparative Assessment of Algorithms and Software for Global Optimization , 2005, J. Glob. Optim..

[28]  János D. Pintér,et al.  Finding elliptic Fekete points sets: two numerical solution approaches , 2001 .

[29]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[30]  Miklós F. Hatwágner,et al.  Benchmarking the LGO Solver Suite within the COCO Test Environment , 2014 .

[31]  Todd Munson,et al.  Benchmarking optimization software with COPS 3.0. , 2001 .

[32]  János D. Pintér,et al.  LGO — A Program System for Continuous and Lipschitz Global Optimization , 1997 .

[33]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[34]  János D. Pintér,et al.  A Global Optimization Approach to Laser Design , 2003 .

[35]  T. L. Mason,et al.  Integrated production system optimization using global optimization techniques , 2007 .

[36]  Vaithilingam Jeyakumar,et al.  Continuous optimization : current trends and modern applications , 2005 .

[37]  János D. Pintér,et al.  Stochastic modelling and optimization for environmental management , 1991, Ann. Oper. Res..

[38]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[39]  János D. Pintér,et al.  An intelligent decision support system for assisting industrial wastewater management , 1995, Ann. Oper. Res..

[40]  Alessandro Castellazzo,et al.  Nonlinear Regression Analysis by Global Optimization: A Case Study in Space Engineering , 2016 .

[41]  János D. Pintér,et al.  Automatic model calibration applying global optimization techniques , 1998 .

[42]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[43]  Y. D. Sergeyev,et al.  Global Optimization with Non-Convex Constraints - Sequential and Parallel Algorithms (Nonconvex Optimization and its Applications Volume 45) (Nonconvex Optimization and Its Applications) , 2000 .

[44]  Giorgio Fasano,et al.  Global Optimization Approaches to Sensor Placement: Model Versions and Illustrative Results , 2012 .

[45]  Giorgio Fasano Solving Non-standard Packing Problems by Global Optimization and Heuristics , 2014 .

[46]  János D. Pintér,et al.  Calibrating artificial neural networks by global optimization , 2012, Expert Syst. Appl..

[47]  J. D. Pinter,et al.  Configuration Analysis and Design by Using Optimization Tools in Mathematica , 2006 .

[48]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[49]  Giorgio Fasano,et al.  Modeling and Optimization in Space Engineering , 2012, Springer Optimization and Its Applications.

[50]  János D. Pintér,et al.  Global optimization in action , 1995 .

[51]  János D. Pintér Globally Optimized Spherical Point Arrangements: Model Variants and Illustrative Results , 2001, Ann. Oper. Res..

[52]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[53]  János D. Pintér,et al.  An Optimization-Based Approach to the Multiple Static Delivery Technique in Radiation Therapy , 2003, Ann. Oper. Res..

[54]  János D. Pintér,et al.  Global Optimization: Software, Test Problems, and Applications , 2002 .

[55]  János D. Pintér,et al.  Groundwater remediation design using physics-based flow, transport, and optimization technologies , 2013, Environmental Systems Research.

[56]  T Talaky,et al.  Interior Point Methods of Mathematical Programming , 1997 .

[57]  János D. Pintér,et al.  Nonlinear Optimization in Modeling Environments , 2005 .

[58]  J. Pintér Nonlinear Optimization in Modeling Environments Software Implementations for Compilers , Spreadsheets , Modeling Languages , and Integrated Computing Systems , 2005 .

[59]  János D. Pintér,et al.  Integrated experimental design and nonlinear optimization to handle computationally expensive models under resource constraints , 2013, J. Glob. Optim..

[60]  J. Pintér Global optimization : scientific and engineering case studies , 2006 .

[61]  Fabio Schoen,et al.  Global Optimization: Theory, Algorithms, and Applications , 2013 .

[62]  Stanley M. Selkow,et al.  Algorithms in a Nutshell , 2008 .

[63]  D. Himmelblau,et al.  Optimization of Chemical Processes , 1987 .

[64]  Tamás Vinkó,et al.  A comparison of complete global optimization solvers , 2005, Math. Program..

[65]  L. F. Escudero Book reviewMore test examples for nonlinear programming codes: Klaus SCHITTKOWSKI Volume 282 in: Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, 1987, iv + 261 pages, DM49.00 , 1988 .

[66]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[67]  Panagiotis Grammelis,et al.  A global optimization study on the devolatilisation kinetics of coal, biomass and waste fuels , 2009 .

[68]  Michael Bartholomew-Biggs,et al.  Nonlinear Optimization with Engineering Applications , 2008 .